New class of soft matter electrolytes obtained via heterogeneous doping: Percolation effects in “soggy sand” electrolytes

2006 ◽  
Vol 177 (26-32) ◽  
pp. 2565-2568 ◽  
Author(s):  
A BHATTACHARYYA ◽  
J MAIER ◽  
R BOCK ◽  
F LANGE
Author(s):  
Apala Majumdar ◽  
Marchetti M. Cristina ◽  
Epifanio G. Virga

Active soft matter is a young, growing field, with potential applications to a wide variety of systems. This Theme Issue explores this emerging new field by highlighting active liquid crystals. The collected contributions bridge theory to experiment, mathematical theories of passive and active nematics, spontaneous flows to defect dynamics, microscopic to continuum levels of description, spontaneous activity to biological activation. While the perspectives offered here only span a small part of this rapidly evolving field, we trust that they might provide the interested reader with a taste for this new class of non-equilibrium systems and their rich behaviour.


2016 ◽  
Vol 113 (27) ◽  
pp. 7399-7402 ◽  
Author(s):  
Rongjia Tao ◽  
Hong Tang ◽  
Kazi Tawhid-Al-Islam ◽  
Enpeng Du ◽  
Jeongyoo Kim

Chocolate is one of the most popular food types and flavors in the world. Unfortunately, at present, chocolate products contain too much fat, leading to obesity. Although this issue was called into attention decades ago, no actual solution was found. To bypass this critical outstanding problem, two manufacturers introduced some low-calorie fats to substitute for cocoa butter. Somehow, their products are not allowed in most countries. Here we show that this issue is deeply related to the basic science of soft matter, especially to the viscosity of liquid suspension and maximally random jammed (MRJ) density. When the concentration of cocoa solid is high, close to the MRJ density, removing a small amount of fat will jam the chocolate flow. Applying unconventional electrorheology to liquid chocolate with applied field in the flow direction, we aggregate the cocoa particles into prolate spheroids in micrometers. This microstructure change breaks the rotational symmetry, reduces liquid chocolate’s viscosity along the flow direction, and increases its MRJ density significantly. Hence the fat level in chocolate can be effectively reduced. We are expecting a new class of healthier and tastier chocolate soon.


2021 ◽  
Author(s):  
Henrik Tappert ◽  
Zengwen Li ◽  
Jasmin Seibert ◽  
Christoph Zippel ◽  
Zahid Hassan ◽  
...  

Structuring soft matter with precise control over molecular arrangements, nanoscale morphologies, especially aiming at functional polymers featuring chirality or helicity, responsiveness, and other features, has been a great research objective, which yet remains a challenging task. In this research work, we developed new design strategies for molecular structuring of an entirely new class of chiral polymers based on [2.2]paracyclophane derivatives. The grafting of tunable functional moieties onto [2.2]paracyclophane enables post-polymerization modification, where diverse perspective applications can be envisioned. In particular, chiral vinyl[2.2]paracyclophane and [2.2]paracyclophane-substituted diazoacetate give novel poly[2.2]paracyclophanylethenes and poly[2.2]paracyclophanylmethenes, respectively.


Author(s):  
Frances M. Ross ◽  
Peter C. Searson

Porous semiconductors represent a relatively new class of materials formed by the selective etching of a single or polycrystalline substrate. Although porous silicon has received considerable attention due to its novel optical properties1, porous layers can be formed in other semiconductors such as GaAs and GaP. These materials are characterised by very high surface area and by electrical, optical and chemical properties that may differ considerably from bulk. The properties depend on the pore morphology, which can be controlled by adjusting the processing conditions and the dopant concentration. A number of novel structures can be fabricated using selective etching. For example, self-supporting membranes can be made by growing pores through a wafer, films with modulated pore structure can be fabricated by varying the applied potential during growth, composite structures can be prepared by depositing a second phase into the pores and silicon-on-insulator structures can be formed by oxidising a buried porous layer. In all these applications the ability to grow nanostructures controllably is critical.


Author(s):  
G. C. Ruben ◽  
K. Iqbal ◽  
I. Grundke-Iqbal ◽  
H. Wisniewski ◽  
T. L. Ciardelli ◽  
...  

In neurons, the microtubule associated protein, tau, is found in the axons. Tau stabilizes the microtubules required for neurotransmitter transport to the axonal terminal. Since tau has been found in both Alzheimer neurofibrillary tangles (NFT) and in paired helical filaments (PHF), the study of tau's normal structure had to preceed TEM studies of NFT and PHF. The structure of tau was first studied by ultracentrifugation. This work suggested that it was a rod shaped molecule with an axial ratio of 20:1. More recently, paraciystals of phosphorylated and nonphosphoiylated tau have been reported. Phosphorylated tau was 90-95 nm in length and 3-6 nm in diameter where as nonphosphorylated tau was 69-75 nm in length. A shorter length of 30 nm was reported for undamaged tau indicating that it is an extremely flexible molecule. Tau was also studied in relation to microtubules, and its length was found to be 56.1±14.1 nm.


Author(s):  
T. F. Kelly ◽  
P. J. Lee ◽  
E. E. Hellstrom ◽  
D. C. Larbalestier

Recently there has been much excitement over a new class of high Tc (>30 K) ceramic superconductors of the form A1-xBxCuO4-x, where A is a rare earth and B is from Group II. Unfortunately these materials have only been able to support small transport current densities 1-10 A/cm2. It is very desirable to increase these values by 2 to 3 orders of magnitude for useful high field applications. The reason for these small transport currents is as yet unknown. Evidence has, however, been presented for superconducting clusters on a 50-100 nm scale and on a 1-3 μm scale. We therefore planned a detailed TEM and STEM microanalysis study in order to see whether any evidence for the clusters could be seen.A La1.8Sr0.2Cu04 pellet was cut into 1 mm thick slices from which 3 mm discs were cut. The discs were subsequently mechanically ground to 100 μm total thickness and dimpled to 20 μm thickness at the center.


Author(s):  
J. Fink

Conducting polymers comprises a new class of materials achieving electrical conductivities which rival those of the best metals. The parent compounds (conjugated polymers) are quasi-one-dimensional semiconductors. These polymers can be doped by electron acceptors or electron donors. The prototype of these materials is polyacetylene (PA). There are various other conjugated polymers such as polyparaphenylene, polyphenylenevinylene, polypoyrrole or polythiophene. The doped systems, i.e. the conducting polymers, have intersting potential technological applications such as replacement of conventional metals in electronic shielding and antistatic equipment, rechargable batteries, and flexible light emitting diodes.Although these systems have been investigated almost 20 years, the electronic structure of the doped metallic systems is not clear and even the reason for the gap in undoped semiconducting systems is under discussion.


2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


2020 ◽  
Vol 11 (24) ◽  
pp. 3940-3950 ◽  
Author(s):  
Patrick Verkoyen ◽  
Holger Frey

Amino-functional polyethers have emerged as a new class of “smart”, i.e. pH- and thermoresponsive materials. This review article summarizes the synthesis and applications of these materials, obtained from ring-opening of suitable epoxide monomers.


Sign in / Sign up

Export Citation Format

Share Document