Improvement of cutting performance for carbide tools via chlorine ion implantation

2004 ◽  
Vol 188-189 ◽  
pp. 630-635 ◽  
Author(s):  
A. Mitsuo ◽  
S. Uchida ◽  
S. Yamamoto ◽  
T. Aizawa
2009 ◽  
Vol 30 (11) ◽  
pp. 1140-1142 ◽  
Author(s):  
Wei-Yip Loh ◽  
H. Etienne ◽  
B. Coss ◽  
I. Ok ◽  
D. Turnbaugh ◽  
...  

2004 ◽  
Vol 177-178 ◽  
pp. 573-581 ◽  
Author(s):  
Tatsuhiko Aizawa ◽  
Thananan Akhadejdamrong ◽  
Atsushi Mitsuo

1997 ◽  
Vol 12 (5) ◽  
pp. 1356-1366 ◽  
Author(s):  
J. H. Booske ◽  
L. Zhang ◽  
W. Wang ◽  
K. Mente ◽  
N. Zjaba ◽  
...  

It is established that nitridation of aluminum (Al) 6061-T4 by plasma source ion implantation (PSII) can dramatically enhance the pitting corrosion resistance of this alloy in marine environments (i.e., chlorine-ion-bearing aqueous solutions or humid atmospheres). Corrosion tests and microstructure analyses establish that the mechanism for successful passivation against chloride-induced pitting corrosion involves the formation of a multilayered microstructure, including the presence of a continuous layer of aluminum-nitride (AlN). Important process variables are the implantation voltage and the nitrogen dose (or total implantation time), as these two variables establish the implanted nitrogen concentration. Too high or too low an implanted nitrogen concentration will not yield the continuous AlN layer required for good corrosion resistance. PSII is attractive for this application as it provides for uniform, conformal implantation of irregularly shaped objects without masking, beam rastering, or object rotation.


Author(s):  
P. Ling ◽  
R. Gronsky ◽  
J. Washburn

The defect microstructures of Si arising from ion implantation and subsequent regrowth for a (111) substrate have been found to be dominated by microtwins. Figure 1(a) is a typical diffraction pattern of annealed ion-implanted (111) Si showing two groups of extra diffraction spots; one at positions (m, n integers), the other at adjacent positions between <000> and <220>. The object of the present paper is to show that these extra reflections are a direct consequence of the microtwins in the material.


Author(s):  
E.G. Bithell ◽  
W.M. Stobbs

It is well known that the microstructural consequences of the ion implantation of semiconductor heterostructures can be severe: amorphisation of the damaged region is possible, and layer intermixing can result both from the original damage process and from the enhancement of the diffusion coefficients for the constituents of the original composition profile. A very large number of variables are involved (the atomic mass of the target, the mass and energy of the implant species, the flux and the total dose, the substrate temperature etc.) so that experimental data are needed despite the existence of relatively well developed models for the implantation process. A major difficulty is that conventional techniques (e.g. electron energy loss spectroscopy) have inadequate resolution for the quantification of any changes in the composition profile of fine scale multilayers. However we have demonstrated that the measurement of 002 dark field intensities in transmission electron microscope images of GaAs / AlxGa1_xAs heterostructures can allow the measurement of the local Al / Ga ratio.


Author(s):  
C. Hayzelden ◽  
J. L. Batstone

Epitaxial reordering of amorphous Si(a-Si) on an underlying single-crystal substrate occurs well below the melt temperature by the process of solid phase epitaxial growth (SPEG). Growth of crystalline Si(c-Si) is known to be enhanced by the presence of small amounts of a metallic phase, presumably due to an interaction of the free electrons of the metal with the covalent Si bonds near the growing interface. Ion implantation of Ni was shown to lower the crystallization temperature of an a-Si thin film by approximately 200°C. Using in situ transmission electron microscopy (TEM), precipitates of NiSi2 formed within the a-Si film during annealing, were observed to migrate, leaving a trail of epitaxial c-Si. High resolution TEM revealed an epitaxial NiSi2/Si(l11) interface which was Type A. We discuss here the enhanced nucleation of c-Si and subsequent silicide-mediated SPEG of Ni-implanted a-Si.Thin films of a-Si, 950 Å thick, were deposited onto Si(100) wafers capped with 1000Å of a-SiO2. Ion implantation produced sharply peaked Ni concentrations of 4×l020 and 2×l021 ions cm−3, in the center of the films.


Author(s):  
N. Lewis ◽  
E. L. Hall ◽  
A. Mogro-Campero ◽  
R. P. Love

The formation of buried oxide structures in single crystal silicon by high-dose oxygen ion implantation has received considerable attention recently for applications in advanced electronic device fabrication. This process is performed in a vacuum, and under the proper implantation conditions results in a silicon-on-insulator (SOI) structure with a top single crystal silicon layer on an amorphous silicon dioxide layer. The top Si layer has the same orientation as the silicon substrate. The quality of the outermost portion of the Si top layer is important in device fabrication since it either can be used directly to build devices, or epitaxial Si may be grown on this layer. Therefore, careful characterization of the results of the ion implantation process is essential.


Sign in / Sign up

Export Citation Format

Share Document