Obscure yet Promising Oleaginous Yeasts for Fuel and Chemical Production

2020 ◽  
Vol 38 (8) ◽  
pp. 873-887 ◽  
Author(s):  
Rachapudi Venkata Sreeharsha ◽  
S. Venkata Mohan
Author(s):  
Kiruthika Thangavelu ◽  
Pugalendhi Sundararaju ◽  
Naganandhini Srinivasan ◽  
Sivakumar Uthandi

Sago processing wastewater was assessed for their suitability as growth substrates using oleaginous yeasts, for the production of a useful enzyme (amylase) under submerged fermentation (SmF). Sago wastewater (pH was adjusted to 6) containing starch concentration (10% w/v) were inoculated with yeast strain and incubated at 30ºC for 10 d in an incubator shaker (150 rpm). The results of the amylase activity of oleaginous yeast and in its substratum SWW were compared with the different processing wastes (potato peel, banana peel, cassava peel, corn residue, rice husk, wheat bran, yam peel and barley husk) and oleaginous yeasts (Rhodotorula mucilaginosa, Saccharomyces pastorianus, Lipomyces starkeyi and Rhodotorula glutinis). Compared to other oleaginous yeast, our yeast strain found to produce higher amylase activity of 1.51 IU mL-1. Furthermore, SWW produced more amylase activity than the other compared wastes. This research finding illustrates the environmental friendly and alternate use of sago processing wastewater, towards their valorization as substrates for valuable enzymes and chemical production.


2019 ◽  
Author(s):  
Yoshihide Furuichi ◽  
Shogo Yoshimoto ◽  
Tomohiro Inaba ◽  
Nobuhiko Nomura ◽  
Katsutoshi Hori

<p></p><p>Biofilms are used in environmental biotechnologies including waste treatment and environmentally friendly chemical production. Understanding the mechanisms of biofilm formation is essential to control microbial behavior and improve environmental biotechnologies. <i>Acinetobacter </i>sp. Tol 5 autoagglutinate through the interaction of the long, peritrichate nanofiber protein AtaA, a trimeric autotransporter adhesin. Using AtaA, without cell growth or the production of extracellular polymeric substances, Tol 5 cells quickly form an unconventional biofilm. In this study, we investigated the formation process of this unconventional biofilm, which started with cell–cell interactions, proceeded to cell clumping, and led to the formation of large cell aggregates. The cell–cell interaction was described by DLVO theory based on a new concept, which considers two independent interactions between two cell bodies and between two AtaA fiber tips forming a virtual discontinuous surface. If cell bodies cannot collide owing to an energy barrier at low ionic strengths but approach within the interactive distance of AtaA fibers, cells can agglutinate through their contact. Cell clumping proceeds following the cluster–cluster aggregation model, and an unconventional biofilm containing void spaces and a fractal nature develops. Understanding its formation process would extend the utilization of various types of biofilms, enhancing environmental biotechnologies.</p><p></p>


2019 ◽  
Vol 16 (3) ◽  
pp. 334-351
Author(s):  
A. S. Mavlyanov ◽  
E. K. Sardarbekova

Introduction. The objective of the research is to study the effect of the complex activation of the alumina raw material on the rheological properties of the ceramic mass. In addition, the authors investigate solutions for the application of optimal coagulation structures based on loams and ash together with plastic certificates.Materials and methods. The authors used the local forest like reserves of clay loams at the BashKarasu, ash fields of the Bishkek Central Heating Centre (BTEC) and plasticizer (sodium naphthenate obtained from alkaline chemical production wastes) as fibrous materials. Moreover, the authors defined technological properties of raw materials within standard laboratory methodology in accordance with current GOSTs.Results. The researchers tested plastic durability on variously prepared masses for the choice of optimal structures. The paper demonstrated the plastic durability of complexly activated compounds comparing with non-activated and mechanically activated compounds. The sensitivity coefficient increased the amount of clay loams by mechanically and complexly activated, which predetermined the possibility of intensifying the process of drying samples based on complexly activated masses.Discussion and conclusions. However, mechanical activation of clay material reduces the period of relaxation and increases the elasticity coefficient of ceramic masses by 1.8–3.4 times, meanwhile decreases elasticity, viscosity and the conventional power during molding, which generally worsens the molding properties of the masses. Сomplex activation of ash-clay material decreases the period of relaxation and provides an increase in elasticity, plasticity of ceramic masses by 46–47%, reduction in viscosity by 1.5–2 times, conventional power on molding by 37–122% in comparison with MA clay loams. Ceramic masses based on spacecraft alumina raw materials belong to the SMT with improved rheological properties; products based on them pass through the mouthpiece for 5–7 seconds.


2018 ◽  
Vol 5 (6) ◽  
pp. 3-7 ◽  
Author(s):  
E.S. Popov ◽  
V.I. Gavrilyuk ◽  
N.V. Mukina ◽  
E.T. Kovalev ◽  
I.D. Drozdnik ◽  
...  

2018 ◽  
Vol 25 (2) ◽  
pp. 195-201
Author(s):  
Hamid Mukhtar ◽  
Syed Muhammad Suliman ◽  
Aroosh Shabbir ◽  
Muhammad Waseem Mumtaz ◽  
Umer Rashid ◽  
...  

2021 ◽  
Vol 13 (12) ◽  
pp. 2244
Author(s):  
Zeeshan Javed ◽  
Aimon Tanvir ◽  
Muhammad Bilal ◽  
Wenjing Su ◽  
Congzi Xia ◽  
...  

Recently, the occurrence of fog and haze over China has increased. The retrieval of trace gases from the multi-axis differential optical absorption spectroscopy (MAX-DOAS) is challenging under these conditions. In this study, various reported retrieval settings for formaldehyde (HCHO) and sulfur dioxide (SO2) are compared to evaluate the performance of these settings under different meteorological conditions (clear day, haze, and fog). The dataset from 1st December 2019 to 31st March 2020 over Nanjing, China, is used in this study. The results indicated that for HCHO, the optimal settings were in the 324.5–359 nm wavelength window with a polynomial order of five. At these settings, the fitting and root mean squared (RMS) errors for column density were considerably improved for haze and fog conditions, and the differential slant column densities (DSCDs) showed more accurate values compared to the DSCDs between 336.5 and 359 nm. For SO2, the optimal settings for retrieval were found to be at 307–328 nm with a polynomial order of five. Here, root mean square (RMS) and fitting errors were significantly lower under all conditions. The observed HCHO and SO2 vertical column densities were significantly lower on fog days compared to clear days, reflecting a decreased chemical production of HCHO and aqueous phase oxidation of SO2 in fog droplets.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 164
Author(s):  
Patrícia M. Carvalho ◽  
Rita C. Guedes ◽  
Maria R. Bronze ◽  
Célia M. C. Faustino ◽  
Maria H. L. Ribeiro

Lipoaminoacids (LAA) are an important group of biosurfactants, formed by a polar hydrophilic part (amino acid) and a hydrophobic tail (lipid). The gemini LAA structures allow the formation of a supramolecular complex with bioactive molecules, like DNA, which provides them with good transfection efficiency. Since lipases are naturally involved in lipid and protein metabolism, they are an alternative to the chemical production of LAA, offering an eco-friendly biosynthetic process option. This work aimed to design the production of novel cystine derived gemini through a bioconversion system using immobilized lipases. Three lipases were used: porcine pancreatic lipase (PPL); lipase from Thermomyces lanuginosus (TLL); and lipase from Rizhomucor miehei (RML). PPL was immobilized in sol-gel lenses. L-cystine dihydrochloride and dodecylamine were used as substrates for the bioreaction. The production of LAA was evaluated by thin layer chromatography (TLC), and colorimetric reaction with eosin. The identification and quantification was carried out by High Performance Liquid Chromatographer-Mass Spectrometry (HPLC-MS/MS). The optimization of media design included co-solvent (methanol, dimethylsulfoxide), biphasic (n-hexane and 2-propanol) or solvent-free media, in order to improve the biocatalytic reaction rates and yields. Moreover, a new medium was tested where dodecylamine was melted and added to the cystine and to the biocatalyst, building a system of mainly undissolved substrates, leading to 5 mg/mL of LAA. Most of the volume turned into foam, which indicated the production of the biosurfactant. For the first time, the gemini derived cystine lipoaminoacid was produced, identified, and quantified in both co-solvent and solvent-free media, with the lipases PPL, RML, and TLL.


Sign in / Sign up

Export Citation Format

Share Document