Development of a dual luciferase activity and fluorescamine protein assay adapted to a 384 micro-well plate format: Reducing variability in human luciferase transactivation cell lines aimed at endocrine active substances

2018 ◽  
Vol 47 ◽  
pp. 18-25 ◽  
Author(s):  
Jennifer C. Brennan ◽  
Donald E. Tillitt
2018 ◽  
Vol 38 (5) ◽  
Author(s):  
Bibo Tan ◽  
Yong Li ◽  
Qun Zhao ◽  
Liqiao Fan ◽  
Dong Wang

It has been reported that the expression of zinc finger protein 139 (ZNF139) and microRNA-185 (miR-185) were associated with proliferation, drug resistance of gastric cancer (GC) cells. However, the detailed mechanisms have not been fully investigated. The expression of ZNF139 in both GC tissues and cell lines was tested, then SGC7901/ADR or SGC7901 cells were transfected with ZNF139-siRNA, miR-185 analog, or pcDNA-ZNF139. Cell activity was determined by MTT assay. Real-time PCR and Western blot were utilized to detect ZNF139, miR-185, and multidrug resistance (MDR) related genes including MDR1/P-gp, GST-π, MRP-1, Bcl-2, TS and Bax. ChIP and dual luciferase activity assay were used to investigate regulation between ZNF139 and miR-185. Increased ZNF139 and decreased miR-185 expression were detected in GC tissues and cell lines. Transfection with ZNF139-siRNA into SGC7901/ADR cells markedly increased expression of miR-185, and treating with chemotherapeutic drugs ADR, 5-FU, L-OHP, the survival rate of SGC7901/ADR cells obviously decreased after ZNF139-siRNA transfection. On the other hand, transfection with pcDNA-ZNF139 in GC cell line SGC7901 resulted in an increased expression level of ZNF139 and a decline in the expression level of miR-185, meanwhile drug resistance of GC cells was clearly enhanced to ADR, 5-FU, L-OHP. Dual luciferase activity assay demonstrated that ZNF139 inhibited transcriptional activities of miR-185’s promoter in cells transfected with the reporter plasmid encompassing the upstream promoter region of miR-185 along with pcDNA-ZNF139. Our data reveal that ZNF139 might promote MDR gene MDR1/P-gp, MRP-1 and Bcl-2 by prohibiting miR-185.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1178
Author(s):  
Justyna Odrobińska ◽  
Magdalena Skonieczna ◽  
Dorota Neugebauer

The in vitro biochemical evaluation of the applicability of polymers carrying active substances (micelles and conjugates) was carried out. Previously designed amphiphilic graft copolymers with retinol or 4-n-butylresorcinol functionalized polymethacrylate backbone and poly(ethylene glycol) (PEG) side chains that included Janus-type heterografted copolymers containing both PEG and poly(ε-caprolactone) (PCL) side chains were applied as micellar carriers. The polymer self-assemblies were convenient to encapsulate arbutin (ARB) as the selected active substances. Moreover, the conjugates of PEG graft copolymers with ferulic acid (FA) or lipoic acid (LA) were also investigated. The permeability of released active substances through a membrane mimicking skin was evaluated by conducting transdermal tests in Franz diffusion cells. The biological response to new carriers with active substances was tested across cell lines, including normal human dermal fibroblasts (NHDF), human epidermal keratinocyte (HaCaT), as well as cancer melanoma (Me45) and metastatic human melanoma (451-Lu), for comparison. These polymer systems were safe and non-cytotoxic at the tested concentrations for healthy skin cell lines according to the MTT test. Cytometric evaluation of cell cycles as well as cell death defined by Annexin-V apoptosis assays and senescence tests showed no significant changes under action of the delivery systems, as compared to the control cells. In vitro tests confirmed the biochemical potential of these antioxidant carriers as beneficial components in cosmetic products, especially applied in the form of masks and eye pads.


2019 ◽  
Vol 18 ◽  
pp. 153303381987020 ◽  
Author(s):  
Xiao Ma ◽  
Dan Li ◽  
Yan Gao ◽  
Cheng Liu

The importance of microRNAs in regulating osteosarcoma development has been studied in recent years. However, the function of microRNA-451a in osteosarcoma growth is rarely investigated. Here, we explored the expression of microRNA-451a in osteosarcoma cell lines. Bioinformatic software, luciferase activity reporter assay, and Western blot were conducted to determine the association between microRNA-451a and tripartite motif-containing 66. Cell Counting Kit-8 assay and transwell assay were used to explore the regulatory effects of microRNA-451a on osteosarcoma cells. Moreover, we explored whether microRNA-451a modulates osteosarcoma cell biological activity by regulating tripartite motif-containing 66. The expression of microRNA-451a was found to be downregulated in osteosarcoma and negatively regulated the expression of tripartite motif-containing 66. Tripartite motif-containing 66 was further validated as a target of microRNA-451a. MicroRNA-451a inhibits the growth and invasion of osteosarcoma cell lines through targeting tripartite motif-containing 66. The miR-451a targets tripartite motif-containing 66 may provide novel therapeutic targets for the treatment of osteosarcoma.


2011 ◽  
Vol 392 (11) ◽  
Author(s):  
Larisa Ring ◽  
Iris Peröbner ◽  
Marisa Karow ◽  
Marianne Jochum ◽  
Peter Neth ◽  
...  

Abstract WNT/Frizzled receptor (FZD) signaling pathways are pivotal for physiological and pathophysiological processes. In humans, the complexity of WNT/FZD signaling is based on 19 WNTs, 10 FZDs and at least two (co)receptors (LRP5/6) mediating supposably four different signaling cascades. The detailed investigation of the specific function of the different initiating components is primarily hampered by the lack of most WNT proteins in a purified form. Therefore, we constructed and examined a chimeric protein of WNT3a and FZD4 as a suitable approach to overcome this obstacle for future studies of the specificity of other WNT/FZD combinations. Furthermore, we produced four different reporter HEK 293 cell lines to quantify the induced activation of the proposed signaling cascades, the β-catenin-, the NFAT-, the AP-1- and the CRE-regulated pathways. The chimera WNT3aFZD4 efficiently induced β-catenin-mediated luciferase activity. This activity was increased 40-fold compared with basal when LRP6 was stably cotransfected, proving that the chimera WNT3aFZD4 can also interact efficiently with LRP6. Our results demonstrate that the approach of using reporter gene cell lines in combination with WNT/FZD chimeras is efficient to study the β-catenin-mediated pathway and should also allow clarifying the specificity of WNT/FZD combinations in the activation of the other pathways.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1801-1801
Author(s):  
Anagha Borwankar ◽  
Alessandro Pastore ◽  
Aniruddha Deshpande ◽  
Yvonne Zimmermann ◽  
Christian Buske ◽  
...  

Abstract Mutations, activation or overexpression of cyclin D1 are common features of several human cancers including mantle cell lymphoma (MCL) which bears the characteristic t(11;14) translocation juxtaposing the cyclin D1 gene downstream of the immunoglobulin heavy chain enhancer. The loss of the 3’UTR of this gene has been reported in a majority of MCL patients as well as in cell lines. In order to assess the impact of the 3’UTR on cyclin D1 expression levels, we used YFP tagged cyclin D1 reporter plasmids to quantify cyclin D1 expression in cell lines with different mutations of the 3’UTR. Interestingly, protein expression was significantly higher upon deletion of the cyclin D1 3’UTR compared to the full-length cyclin D1 gene as assessed by flow cytometry (2.1 fold; n=3, P < 0.05). Applying a more sensitive dual-luciferase reporter assay where a constitutively expressed luciferase gene was fused to the cyclin D1 3’UTR, the normalized firefly luciferase activity was reduced significantly to 23% as compared to luciferase only (the empty vactor). We then introduced 3’UTR mutations observed in MCL patients (insertion of adenosine between nucleotides 2308 and 2309 and a deletion of the tri-nucleotide sequence TCA from 2309–2311 of the full length cyclin D1-YFP reporter cDNA), which resulted in a significant increase of cyclin D1 expression (1.3 fold both in Ins308 and Δ309-311) compared to full length cyclin D1, (P< 0.05) showing that these mutations contribute to cyclinD1 overexpression in these patients. Subsequently, the 3’UTR was scanned for elements potentially regulating cyclin D1 expression, and putative microRNA binding sites were identified using the TargetScan and PicTar microRNA target prediction software. The most interesting candidate microRNAs include the miR-15/16 family and the miR-17–92 cluster, both of which have been shown to be involved in lymphoid malignancies and regulate cell cycle progression. In order to confirm whether the cyclin D1 3’UTR is a direct target of these microRNAs, we cloned the cyclin D1 3’UTR target region containing putative miR-15/16 or miR-17/20a binding sites and transfected these reporter constructs into HeLa cells. Upon introduction of oligonucleotide mimics of the miR15/16 microRNAs or a plasmid expressing microRNAs of the miR-17 cluster, the normalized luciferase activity of the respective luciferase reporters was reduced significantly to 41% (miR-15), 33% (miR-16) and 79% (miR-17/20a), respectively. Moreover, introduction of mutations in the seed sequences of the putative microRNA recognition sites rendered these constructs insensitive to inhibition by these microRNAs, confirming the specificity of the microRNA::target interaction. These data confirm that the binding of these microRNAs play an important role in the repression of cyclin D1 mediated by the 3’UTR and mutation or deletion result in cyclin D1 overexpression in MCL as well as other human tumors.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 417-417
Author(s):  
Goldi A. Kozloski ◽  
Xiaoyu Jiang ◽  
Karen L. Bunting ◽  
Ari M. Melnick ◽  
Izidore S Lossos

Abstract Abstract 417 MicroRNAs (miRNAs) exhibit differential expression in cancer and can be used as prognostic biomarkers. MiR-181a expression is reported to be associated with survival and outcome in acute myeloid and chronic lymphocytic leukemia patients. We demonstrated that miR-181a levels are independently associated with improved survival of diffuse large B cell lymphoma (DLBCL) patients treated with R-CHOP (Rituximab, Cyclophosphamide, Adriamycin, Oncovin, Prednisolone). However, the mechanism underlying this observation and the function of miR-181a in DLBCL pathogenesis are unknown. MiR-181a was expressed at higher levels in centroblasts compared to naïve and memory B cells, and at significantly higher levels in GCB-like compared to ABC-like DLBCL cell lines (p=0.017). These observations suggested that miR-181a may differentially target critical signaling pathways in GCB and ABC DLBCL. NF-kB serves a critical role in ABC DLBCL survival. Utilizing 3 miRNA target prediction algorithms, multiple NF-κB signaling pathway transcripts harbored putative miR-181a binding sites. Consequently, we tested the effect of miR-181a on CARD11, IBKα, p105/p50, and C-Rel expression in DLBCL cell lines (HBL1, VAL). Compared with a scrambled miRNA control, miR-181a expression decreased protein and mRNA levels of these targets. To confirm the effect was direct, we fused the 3′-UTR sequences of CARD11, IBKα, p105 and C-Rel, each containing miR-181a putative binding sites, to a luciferase reporter gene. Co-transfecting miR-181a with the corresponding constructs, we demonstrated that all the constructs had significantly repressed luciferase activity compared with a non-targeting control. The effect was specific, since miR-181a did not affect luciferase activity of CARD11, IBKα, p105 and C-Rel reporter constructs with mutated binding sites. Using an NF-κB luciferase reporter assay, we next demonstrated that compared to a scrambled control, miR-181a significantly decreased NF-κB reporter activity in DLBCL cell lines (VAL, SUDHL6, OCILY7, OCILY19, HBL1, RCK8). MiR-181a also decreased NF-κB reporter activity induced by anti-IgM and TNFα stimulation. Concordantly, anti-miR-181a increased endogenous p105/p50 and C-Rel protein levels. Because ubiquitinated-IKKγ drives NF-κB signaling, we tested the effect of miR-181a in TNFα-stimulated 293T cells on ubiquitinated-IKKγ. MiR-181a decreased levels of ubiquitinated-IKKγ, corroborating the observed inhibitory effects on NF-κB signaling. We reasoned that NF-κB signaling repression should coincide with a decrease in endogenous transcription activity from NF-κB promoters. Indeed, miR-181a decreased mRNA expression levels of NF-κB target genes (BCL2, IRF4, IL-6, IKBa, FN1, PIM1, BLR1, CCL3, CFLAR, FCER2, TP53) as measured by qRT-PCR in miR-181a-transfected HBL1 cells. Because miR-181a directly targets p105/p50 and REL proteins, we postulated that this may be one of the main mechanisms of NF-κB signaling repression. Indeed, an electrophoresis mobility shift assay along with super-shifts analyses showed a decrease in the p105/p50 protein in HeLa nuclear extracts. To examine the biological significance of differential miR-181a expression between GCB- and ABC-like DLBCL and elucidate its potential role in DLBCL pathogenesis, we next assessed cell death (Annexin V, 7AAD) and cell proliferation (BrdU, 7AAD) in GCB (SUDHL4, OCILY7, OCILY19, VAL) and ABC (HBL1, OCILY10, RCK8, U2932) DLBCL cell lines transfected with GFP labeled precursor miR-181a. MiR-181a expression significantly increased cell death and apoptosis of ABC versus GCB DLBCL (p=0.006). This was associated with a more pronounced G1 phase growth arrest in the ABC DLBCL cells. Our studies demonstrate that miR-181a is a master regulator of canonical NF-kB signaling by regulating the expression of multiple components of this pathway, an effect that may underlie the distinct prognosis of DLBCL with different miR-181a expression levels. Furthermore, miR-181a down regulation may contribute to the pathogenesis of ABC DLBCL. Disclosures: No relevant conflicts of interest to declare.


2009 ◽  
Vol 70 (2) ◽  
pp. 369-377
Author(s):  
Walter Hundt ◽  
Silke Steinbach ◽  
Caitlin E. O’Connell-Rodwell ◽  
Dirk Mayer ◽  
Mark D. Bednarski ◽  
...  

Blood ◽  
1994 ◽  
Vol 84 (10) ◽  
pp. 3510-3517
Author(s):  
O Alcantara ◽  
L Obeid ◽  
Y Hannun ◽  
P Ponka ◽  
DH Boldt

We have studied effects of ferric transferrin (FeTF), ferric lactoferrin (FeLF), ferric complexes of pyridoxal- or salicylaldehyde- isonicotinoyl hydrazone, (Fe-PIH, Fe-SIH), and ferric ammonium citrate (FAC) on expression of protein kinase C (PKC) mRNA transcripts in a variety of cultured cell lines. FeTF supported an increase of PKC-beta mRNA transcripts in T-lymphoblastoid (CCRF-CEM; Jurkat), B- lymphoblastoid (Daudi; Raji), promyelocyte (HL-60), erythroleukemia (K562), and monocyte (U937) cell lines. By contrast, FeLF, Fe-PIH, and Fe-SIH did not support an increase of PKC-beta mRNA transcripts in any of these cell lines. Furthermore, FAC supported an increase of PKC-beta mRNA transcripts in HL-60, K562, and U937 cells only. Preincubation of cells with desferrioxamine (DF), a cell-permeable iron chelator, abolished the increments of PKC-beta mRNA observed in response to FeTF or FAC. In contrast to results with PKC-beta, neither FeTF nor FAC caused an increase of PKC-alpha transcripts in any cell line. To locate iron-responsive DNA regulatory elements of the PKC-beta gene, we prepared genetic constructs containing various portions of the human PKC-beta 52-flanking DNA linked to the firefly luciferase gene. Constructs were cotransfected with the neomycin resistance plasmid, Pwl- neo, into HRE H9 cells, and stable transfectants were selected in G418. Treatment with FeTF of transfectants bearing chimeric gene constructs with 2,200 bp of the PKC-beta 52-flanking region increased luciferase activity and mRNA transcripts 2.5-fold. This increase was blocked by DF. Neither luciferase activity nor mRNA increased with FeTF in stable transfectants bearing constructs with 342 bp or 587 bp of the PKC-beta 52-flanking region. These data provide direct confirmation that iron is involved in regulation of PKC-beta but not PKC-alpha gene expression in many cell lines. The form in which iron is presented to these cell lines appears to affect its availability for this function, and cells vary in their capabilities to use nontransferrin iron to support PKC- beta gene expression. Finally, transcriptional upregulation of PKC-beta by FeTF is mediated by DNA sequences located between -2200 bp and -587 bp in the 52-flanking region of the human PKC-beta gene.


Sign in / Sign up

Export Citation Format

Share Document