Ultimate strain capacity assessment of local buckling of pipelines with kinked dents subjected to bending loads

2021 ◽  
Vol 169 ◽  
pp. 108369
Author(s):  
Junqiang Wang ◽  
Yi Shuai ◽  
Renyang He ◽  
Xiran Dou ◽  
Ping Zhang ◽  
...  
Author(s):  
Fan Zhang ◽  
Ming Liu ◽  
Yong-Yi Wang ◽  
Zhifeng Yu ◽  
Lei Tong

Ground subsidence can threaten the integrity of buried pipelines in areas with prior and on-going mining activities. The integrity can be assessed by comparing the strain demand and the strain capacity. The Tensile Strain Capacity (TSC) of the pipeline is dominated by the girth welds due to their relatively inferior property in comparison to the base pipe materials. Parametric models developed at CRES for US DOT and PRCI allow the evaluation of girth welds TSC based on pipe dimensions, base material and weld properties and flaw size. The local buckling of the pipeline under compressive or bending loads determines the Compressive Strain Capacity (CSC). Three existing standards are used to evaluate CSC, including DNV OS-F101, CSA Z662 and API RP 1111. The strain demand analysis of the pipeline under multiple subsidence scenarios is presented in a companion paper. The strain demand is compared with TSC and CSC separately to evaluate the pipeline integrity. The use of CRES TSC models for selecting a variety of design and material parameters to improve TSC is illustrated.


Author(s):  
Shan Jin ◽  
Shuai Yuan ◽  
Yong Bai

In practical application, pipelines will inevitably experience bending and compression during manufacture, transportation and offshore installation. The mechanical behavior of tubes under combined axial compression and bending loads is investigated using experiments and finite element method in this paper. Tubes with D/t ratios in the range of 40 and 97 are adopted in the experiments. Then, the ultimate loads and the local buckling modes of tubes are studied. The commercial software ABAQUS is used to build FE models to simulate the load-shortening responses of tubes under combined loads. The results acquired from the ABAQUS simulation are compared with the ones from verification bending experiment, which are in good agreement with each other. The models in this paper are feasible to analyze the mechanical properties of tubes under combined axial compression and bending loads. The related results may be of interest to the manufacture engineers.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
M. Liu ◽  
C. Cross

A strain concentration factor is typically incorporated in the higher-pressure and high-temperature (HPHT) pipeline lateral buckling assessment to account for nonuniform stiffness or plastic bending moment. Increased strain concentration can compromise pipeline low cycle fatigue and lateral buckling capacity, leading to an early onset of local buckling failure. In this paper, the philosophy of local buckling mitigation using the strain concentration factor is examined. The local buckling behavior is evaluated. Global strain reduction and evolution against buckling are analyzed with respect to varying joint mismatch level. The concept of a strain reduction factor (SNRF) due to joint mismatch is developed based on the global strain capacity reduction with reference to the uniform configuration. It is demonstrated that the SNRF in terms of strain capacity reduction is a unique characteristic parameter. As opposed to strain concentration, it is an invariant insensitive to evaluation methods and design strain demand level, hence more representative as a limiting design metric to maintain the safety margin. The rationale for its introduction as an alternative to the strain concentration factor is outlined and its benefits are established. The method for obtaining the SNRF and its application is developed. The discernible difference and scenarios for application of either factor are discussed, including low and high cycle fatigue, linearity and stress concentration, engineering criticality assessment (ECA), and lateral buckling. Additional causal factors giving rise to mismatch such as pipe schedule transition and buckler arrestor are also discussed. Iterations of finite element (FE) analyses are performed for a pipe-in-pipe (PIP) configuration in a case study.


Author(s):  
Tomasz Tkaczyk ◽  
Daniil Vasilikis ◽  
Aurelien Pepin

Abstract The high demand for subsea transportation of corrosive wellhead produced fluids has created interest in economical mechanically lined pipes (MLP) made of external carbon steel and a thin internal layer of corrosion resistant alloy (CRA). The bending strain capacity of an MLP, where a CRA liner is adhered to a carbon steel host pipe by means of an interference fit, is often governed by the liner wrinkling limit state. Although the strain capacity of the MLP with a typical 3 mm thick liner is enough to withstand bending to strains encountered during installation with the S-lay or J-lay method, the liner is at risk of wrinkling when the MLP is subjected to higher bending strains during reel-lay. To allow reeled installation, the liner strain capacity is enhanced by either increasing the liner thickness or pressurizing the MLP during installation. In the former approach, the required liner thickness is proportional to the pipe diameter. For larger diameter MLPs, it is therefore often more economical to select a 3 mm thick liner and flood and pressurize an MLP to ensure liner stability during reeling. However, the MLP may need to be depressurized and partially drained during installation to allow welding a structure, performing reel-to-reel connection or pipeline recovery which impose bending strain on a plastically pre-strained and depressurized pipeline. Furthermore, reeled pipelines may be depressurized subsea while subjected to bending loads from operation. Although there is a history of research into the limit loads and failure modes of MLPs, there is still no comprehensive guidance on determining the risk of liner wrinkling in plastically pre-strained MLPs. In this paper, an approach is proposed for evaluating the strain capacity and assessing the risk of liner wrinkling after an MLP, subjected to plastic bending during reeled installation at elevated pressure, is depressurized and subjected to installation loads during offshore intervention or operational loading in service. The combined effect of strain history at elevated pressure, reeling-induced ovality, bending direction after depressurization, differential pressure, temperature and residual strain is discussed. The recommendations for further work are also given.


2013 ◽  
Vol 13 (03) ◽  
pp. 1250070 ◽  
Author(s):  
CASEY R. BRISCOE ◽  
SUSAN C. MANTELL ◽  
JANE H. DAVIDSON

In-plane bending loads occur in many thin-walled structures, including web core sandwich panels (foam-filled panels with interior webs) under transverse loading. The design of such structures is limited in part by local buckling of the thin webs and the subsequent impact on stiffness and strength. However, the core material can have a significant impact on web buckling strength and thus must be considered in design. This paper presents solutions for the buckling strength of simply supported plates under in-plane bending loads. The location of the neutral bending axis is allowed to vary and is characterized by a load parameter. A Pasternak model is used to account for the resistance of the foundation to compression and shear. Using the principle of minimum potential energy, buckling solutions are developed for infinitely long plates and representative foundation materials. The solutions match known results for two special cases: Uniform loading with variable foundation, and bending loads with no foundation. An order of magnitude increase in buckling strength is possible, depending on loading and foundation stiffness. The results suggest an important avenue for future development of lightweight structures, including sandwich panels and structures such as plate girders that are not typically associated with the use of foam filling.


Author(s):  
Bing Liu ◽  
Xiao Tan ◽  
Dinaer Bolati ◽  
Hang An ◽  
Jinxu Jiang

Abstract Corrosion defects are dreadfully damaging to the stability of pipelines. Using the finite element (FE) simulation method, a model of API 5L X65 steel pipeline is established in this work to study its buckling behavior subjected to axial compressive loading. The local buckling state of the pipe at the ultimate axial compressive capacity was captured. Compared with the global compressive strain capacity (CSCglobal), the local compressive strain capacity (CSClocal) is more conservative. Extensive parametric analysis, including approximately 115 FE cases, was conducted to study the influence of the corrosion defect sizes and internal pressure on the corroded pipe’s compressive loading capacity (CLC) and CSC. Results show that the enlarged size of the corrosion defect decreases both the CLC and the CSC of the pipeline, but the CLC almost keeps unchanged as the length of corrosion defects increases. The CLC decreases with the increase of the length of corrosion defects when the length is less than 1.5Dt and greater than 0.7Dt. The CSC drops significantly until the length of the corrosion defect reached 1.8Dt. The deeper the corrosion defect, the smaller the CLC and the CSC. An increase in the width of corrosion defects tends to correspond to a decrease in the CLC and the CSC. With the increase of internal pressure, the CSC of the pipe gets greater while the CLC gets smaller. Based on the 115 FE results, a machine learning model based on support vector regression theory was developed to predict the pipe’s CSC. The regression coefficient between SVR predicted value and FEM actual value is 98.87%, which proves that the SVR model can predict the CSC with high accuracy and efficiency.


Author(s):  
Woo Yeon Cho ◽  
Dong-Han Seo ◽  
Jang-Yong Yoo

In compressive strain capacity, high deformable linepipe steel, which is able to delay or evade local buckling, is needed. The objective of this paper is to present the results of an experimental and a finite-element investigation into the behavior of pipes subjected to bending behavior of aged API-X100 linepipe. The comparative behavior of aged and non aged specimens was recorded. The Results from numerical models are checked against the observations in the testing program and the ability of numerical solutions to predict pipe compressive strain capacity, curvatures, and buckling modes is improved. A finite-element model was developed using the finite-element simulator ABAQUS to predict the local buckling behavior of pipes. The input stress-strain relations of the material were discussed using the indexed yield point elongations. The comparison between the results of yield point elongation type material and those of material of smooth stress-strain curve near yield was done.


Author(s):  
John Barrett ◽  
Shawn Kenny ◽  
Ryan Phillips

Pipeline structural integrity is a critical component of pipeline design in extreme environmental conditions. Severe loads may be an issue in pipeline design if differential ground movement is prevalent in the design region, e.g. ground faulting and permafrost heave and settlement. Iceberg or ice keel interaction and large seabed deformations interacting may also be a critical design integrity issue for offshore pipelines in ice environments. Numerical finite element modelling procedures have been developed to assess the bending moment and strain capacity of several pipelines over various typical pipeline parameters. This study looks at the effects of girth-weld imperfection on the bending response of welded pipelines. Limited guidance is provided by pipeline design standards, for example DNV OS-F101 and CSA Z662, as to how to account for girth weld effects on the local buckling response. This paper investigates girth weld effects across a range of practical design parameters. Calibration of the numerical analysis was performed using available data, from full-scale tests and finite element analysis, for girth welded pipes in order to obtain confidence in the numerical procedure. The significance of girth weld effects was to reduce the peak bending moment capacity by 10% whereas strain capacity was reduced by as much as 35% based on the degree of girth weld imperfection. Girth weld effects have been acknowledged in industry, however, further research and physical testing is required to fully understand the problem, as shown in this paper.


Author(s):  
Nobuhisa Suzuki ◽  
Hidetaka Watanabe ◽  
Toshiyuki Mayumi ◽  
Hiroyuki Horikawa

Excellent workability of the stress-strain curve controlled high strain line pipe on cold bending with a bending angle of 10 degrees is presented. The high-strain line pipe has a round-house type s-s curve with the stress ratio σ2.0/σ1.0 of 1.030, where σ1.0 and σ2.0 are 1.0% and 2.0% yield stress, respectively. A standard yield-plateau type line pipe was also employed for comparison. FEA was conducted to investigate the cold bending behaviors of X65, 24″ line pipe. The longitudinal strain induced in the high-strain pipe at peak load and unloaded steps are small compared to those in the standard pipe. Effects of residual strain on local buckling behaviors of the high-strain cold bends are investigated. The effect of residual strain on the strain capacity of cold bend subjected to closing and opening mode bending is small when the cold bend is not pressurized. FEA tends to overestimate the strain capacity in bending when the bend is pressurized. However FEA well predicts the locations of the shell wrinkle of the pressurized bend subjected to opening mode bending when residual strain is taken into account. Seismic integrity of the 24″ high-strain cold bend in a lateral spreading zone is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document