Escherichia coli ghosts or live E. coli expressing the ferri-siderophore receptors FepA, FhuE, IroN and IutA do not protect broiler chickens against avian pathogenic E. coli (APEC)

Author(s):  
Huruma Nelwike Tuntufye ◽  
Ellen Ons ◽  
Anh Dao Nguyen Pham ◽  
Tom Luyten ◽  
Nani Van Gerven ◽  
...  
2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


2019 ◽  
Author(s):  
Elizabeth Muligisa Muonga ◽  
Geoffrey Mainda ◽  
Mercy Mukuma ◽  
Geoffrey Kwenda ◽  
Bernard Hang'ombe ◽  
...  

Abstract Background Antimicrobial resistance (AMR) of foodborne pathogens is of public health concern, especially in developing countries like Zambia. This study was undertaken to determine the resistance profiles of Escherichia coli ( E. coli ) and Salmonella isolated from dressed broiler chickens purchased from open markets and supermarkets in Zambia.Results A total of 189 E. coli and five Salmonella isolates were isolated. Identification and confirmation of the isolates was done using Analytical Profile Index (API 20E) (Biomerieux ® ) and 16S rRNA sequencing. Antimicrobial susceptibility tests (AST) were performed using the Kirby Bauer disk diffusion technique using a panel of 10 different antibiotics and multiplex PCR was used to determine the presence of three target genes encoding for resistance: tetA, Sul1 and CTXM. AST results were entered and analyzed in WHONET 2018 software. A total of 189 E. coli and five Salmonella isolates were identified. Among the E. coli isolates, Tetracycline recorded the highest resistance of 79.4%, followed by Ampicillin 51.9%, Trimethoprim/Sulfamethoxazole 49.7%, Nalidixic Acid 24.3%, Chloramphenicol 16.4%, Cefotaxime 16.4%, Ciprofloxacin 10.1%, Colistin 7.4%, Amoxicillin/Clavulanic acid 6.9%, and Imipenem 1.1%. Two of the five Salmonella isolates were resistant to at least one antibiotic. Forty- seven (45.2%) of the isolates possessed at least one of the targeted resistance genes.Conclusion This study has demonstrated the presence of AMR E. coli and Salmonella on raw broiler chickens from both open markets and supermarkets. Such resistance is of public health concern and measures need to be put in place to regulate the use of these antimicrobials in poultry production.


2018 ◽  
pp. 1720-1724 ◽  
Author(s):  
Shahin Mahmud ◽  
K. H. M. Nazmul Hussain Nazir ◽  
Md. Tanvir Rahman

Aim: The present study was carried out to determine the prevalence and molecular detection of fluoroquinolone-resistant Escherichia coli carrying qnrA and qnrS genes in healthy broiler chickens in Mymensingh, Bangladesh, and also to identify the genes responsible for such resistance. Materials and Methods: A total of 65 cloacal swabs were collected from apparently healthy chickens of 0-14 days (n=23) and 15-35 days (n=42) old. The samples were cultured onto Eosin Methylene Blue Agar, and the isolation and identification of the E. coli were performed based on morphology, cultural, staining, and biochemical properties followed by polymerase chain reaction (PCR) targeting E. coli 16S rRNA genes. The isolates were subjected to antimicrobial susceptibility test against five commonly used antibiotics under fluoroquinolone (quinolone) group, namely gatifloxacin, levofloxacin, moxifloxacin, ofloxacin, and pefloxacin by disk diffusion method. Detection of qnrA and qnrS genes was performed by PCR. Results: Among the 65 cloacal samples, 54 (83.08%) were found to be positive for E. coli. Antibiotic sensitivity test revealed that, of these 54 isolates, 18 (33.33%) were found to be resistant to at least one fluoroquinolone antibiotic. The highest resistance was observed against pefloxacin (61.11%). By PCR, of 18 E. coli resistant to fluoroquinolone, 13 (72.22%) were found to be positive for the presence of qnrS. None of the isolates were found positive for qnrA. Conclusion: Fluoroquinolone-resistant E. coli harboring qnrS genes is highly prevalent in apparently healthy broiler chickens and possesses a potential threat to human health.


2004 ◽  
Vol 67 (9) ◽  
pp. 1829-1833 ◽  
Author(s):  
J. A. CASON ◽  
M. E. BERRANG ◽  
R. J. BUHR ◽  
N. A. COX

Paired carcass halves were used to test whether fecal contamination of skin during processing of broiler chickens can be detected by increased bacterial counts in samples taken before and after immersion chilling. In each of three trials, six freshly defeathered and eviscerated carcasses were cut in half, and a rectangle (3 by 5 cm) was marked with dots of ink on the breast skin of each half. One half of each pair was chosen randomly, and 0.1 g of freshly collected feces was spread over the rectangle with a spatula. After 10 min, both halves were sprayed with tap water for 10 to 15 s until feces could no longer be seen in the marked area. Both halves were sampled with a 1-min carcass rinse and were then put in a paddle chiller with other eviscerated carcasses for 45 min to simulate industrial immersion chilling. Immediately after chilling, each carcass half was subjected to another 1-min rinse, after which the skin within the rectangle was aseptically removed from the carcass halves and stomached. Rinses of fecally contaminated halves had significantly higher Enterobacteriaceae immediately before chilling, but there were no differences in coliform and Escherichia coli counts. After chilling, there were no differences in Enterobacteriaceae, coliform, and E. coli counts in rinse or skin samples from the paired carcass halves. Correlations were generally poor between counts in rinse and skin samples but were significant between prechill and postchill rinses for both control and fecally contaminated halves. Correlations were also significant between counts in rinses of control and contaminated halves of the same carcass after chilling. Bacterial counts in postchill carcass rinses did not indicate that fecal contamination occurred before chilling.


2017 ◽  
Vol 81 (2) ◽  
pp. 302-307 ◽  
Author(s):  
Nahla O. Eltai ◽  
Elmoubasher A. Abdfarag ◽  
Hamad Al-Romaihi ◽  
Eman Wehedy ◽  
Mahmoud H. Mahmoud ◽  
...  

ABSTRACT Antibiotic resistance (AR) is a growing public health concern worldwide, and it is a top health challenge in the 21st century. AR among Enterobacteriaceae is rapidly increasing, especially in third-generation cephalosporins and carbapenems. Further, strains carrying mobilized colistin resistance (mcr) genes 1 and 2 have been isolated from humans, food-producing animals, and the environment. The uncontrolled use of antibiotics in food-producing animals is a major factor in the generation and spread of AR. No studies have been done to evaluate AR in the veterinary sector of Qatar. This study aimed at establishing primary baseline data for the prevalence of AR among food-producing animals in Qatar. Fecal samples (172) were obtained from two broiler farms and one live bird market in Qatar, and 90 commensal Escherichia coli bacteria were isolated and subjected to susceptibility testing against 16 clinically relevant antibiotics by using the E-test method. The results found that 81 (90%) of 90 isolates were resistant to at least one antibiotic, 14 (15.5%) of 90 isolates were colistin resistant, 2 (2.2%) of 90 isolates were extended-spectrum β-lactamase producers, and 2 (2.2%) of 90 isolates were multidrug resistant to four antibiotic classes. Extended-spectrum β-lactamase–producing E. coli and colistin-resistant isolates were confirmed by using double-disc susceptibility testing and PCR, respectively. Such a high prevalence of antibiotic-resistant E. coli could be the result of a long application of antibiotic treatment, and it is an indicator of the antibiotic load in food-producing animals in Qatar. Pathogens carrying AR can be easily transmitted to humans through consumption of undercooked food or noncompliance with hygiene practices, mandating prompt development and implementation of a stewardship program to control and monitor the use of antibiotics in the community and agriculture.


2020 ◽  
Vol 8 (9) ◽  
pp. 1434 ◽  
Author(s):  
Hyun-Ju Song ◽  
Dong Chan Moon ◽  
Abraham Fikru Mechesso ◽  
Hee Young Kang ◽  
Mi Hyun Kim ◽  
...  

We aimed to identify and characterize extended-spectrum β-lactamase (ESBL)-and/or plasmid-mediated AmpC β-lactamase (pAmpC)-producing Escherichia coli isolated from healthy broiler chickens slaughtered for human consumption in Korea. A total of 332 E. coli isolates were identified from 339 cloacal swabs in 2019. More than 90% of the isolates were resistant to multiple antimicrobials. ESBL/pAmpC-production was noted in 14% (46/332) of the isolates. Six of the CTX-M-β-lactamase-producing isolates were found to co-harbor at least one plasmid-mediated quinolone resistance gene. We observed the co-existence of blaCMY-2 and mcr-1 genes in the same isolate for the first time in Korea. Phylogenetic analysis demonstrated that the majority of blaCMY-2-carrying isolates belonged to subgroup D. Conjugation confirmed the transferability of blaCTX-M and blaCMY-2 genes, as well as non-β-lactam resistance traits from 60.9% (28/46) of the ESBL/pAmpC-producing isolates to a recipient E. coli J53. The ISECP, IS903, and orf477 elements were detected in the upstream or downstream regions. The blaCTX-M and blaCMY-2 genes mainly belonged to the IncI1, IncHI2, and/or IncFII plasmids. Additionally, the majority of ESBL/pAmpC-producing isolates exhibited heterogeneous PFGE profiles. This study showed that healthy chickens act as reservoirs of ESBL/pAmpC-producing E. coli that can potentially be transmitted to humans.


1992 ◽  
Vol 29 (1) ◽  
pp. 68-78 ◽  
Author(s):  
M. DeRosa ◽  
M. D. Ficken ◽  
H. J. Barnes

Ninety commercial broiler chickens were divided into three equal groups; 30 were injected with brain-heart-infusion broth into the cranial thoracic air sacs (controls), 30 were similarly inoculated with a culture of Escherichia coli, and 30 were similarly inoculated with E. coli cell-free culture filtrate. Birds were examined from 0 to 6 hours post-inoculation. E. coli-inoculated and cell-free culture filtrate-inoculated chickens reacted similarly, with exudation of heterophils into the air sac. Microscopically, heterophils were present in low numbers perivascularly 0.5 hour after inoculation and became more numerous by 3 hours post-inoculation. By 6 hours post-inoculation, there was severe swelling of air sac epithelial cells and thickening of the air sac by proteinaceous fluid and heterophils. Ultrastructurally, air sac epithelial cells were swollen and vacuolated, and interdigitating processes were separated. Histologically and ultrastructurally, all features in control chickens were normal, with only rare heterophils in the air sac interstitium. In E. coli-inoculated and cell-free culture filtrate-inoculated chickens, cell counts (predominantly heterophils) in air sac lavage fluids increased markedly at 3 and 6 hours, with only slight increases in counts from lavages of controls. Heteropenia was observed in E. coli-inoculated chickens, whereas heterophilia was observed in cell-free filtrate chickens and controls. Ninety additional chickens were pretreated with cyclophosphamide, subdivided into three equal groups, and inoculated and examined similarly as above. Cyclophosphamide pretreatment reduced inflammatory changes in air sacs, lowered cell numbers in lavage fluids, and abolished hematologic changes; however, it did not prevent epithelial cell changes. These results indicate that cell-free culture filtrate of E. coli induces changes similar to those induced by cultures of E. coli.


1973 ◽  
Vol 71 (4) ◽  
pp. 771-781 ◽  
Author(s):  
E. D. Heller ◽  
H. Williams Smith

SummaryOf 173 epidemiologically unrelated strains of Escherichia coli isolated from the pericardial sac of chickens that had died from infection with these organisms in England in 1972, approximately 1 year after the introduction of legislation forbidding the routine use of feeds containing ‘therapeutic’ antibiotics, 83·8% were resistant to sulphonamides, 31·2 % to tetracyclines, 20·8% to furazolidone, 18·5% to streptomycin, 2·9% to spectinomycin and 1·2% to ampicillin; none of the strains were resistant to chloramphenicol, neomycin, polymixin, trimethoprim or nalidixic acid. The sulphonamide resistance and possibly some of the resistance to other agents might have been the consequence of sulphonamides being exempted from the legislation. Much of the resistance, with the exception of that to furazolidone, was of the transferable type. Many strains possessed transfer factors in the absence of any known transferable characteristic. Colicine production was twice as common in the pathogenic strains as in a collection of strains isolated from the faeces of healthy chickens; about half of it was transferable.By means of serology, antibiotic resistance and other markers, it was found that several different kinds of E. coli were usually incriminated in any one outbreak of E. coli infection in broiler chickens. Sometimes the same kinds of E. coli were found in outbreaks in consecutive crops of chickens on the same farm. New kinds, too, appeared to be brought in by replacement chickens.


2016 ◽  
Vol 79 (8) ◽  
pp. 1424-1429 ◽  
Author(s):  
BERNADETHER T. RUGUMISA ◽  
DOUGLAS R. CALL ◽  
GASPARY O. MWANYIKA ◽  
REHEMA I. MRUTU ◽  
CATHERINE M. LUANDA ◽  
...  

ABSTRACT We compared the prevalence of antibiotic-resistant Escherichia coli isolates from household-level producers of broiler (commercial source breeds) and local chickens in the Arusha District of Tanzania. Households were composed of a single dwelling or residence with independent, penned broiler flocks. Free-range, scavenging chickens were mixed breed and loosely associated with individual households. A total of 1,800 E. coli isolates (1,200 from broiler and 600 from scavenging local chickens) from 75 chickens were tested for their susceptibility against 11 antibiotics by using breakpoint assays. Isolates from broiler chickens harbored a higher prevalence of antibiotic-resistant E. coli relative to scavenging local chickens, including sulfamethoxazole (80.3 versus 34%), followed by trimethoprim (69.3 versus 27.7%), tetracycline (56.8 versus 20%), streptomycin (52.7 versus 24.7%), amoxicillin (49.6 versus 17%), ampicillin (49.1 versus 16.8%), ciprofloxacin (21.9 versus 1.7%), and chloramphenicol (1.5 versus 1.2%). Except for resistance to chloramphenicol, scavenging local chickens harbored fewer resistant E. coli isolates (P &lt; 0.05). Broiler chickens harbored more isolates that were resistant to ≥7 antibiotics (P &lt; 0.05). The higher prevalence of antibiotic-resistant E. coli from broiler chickens correlated with the reported therapeutic and prophylactic use of antibiotics in this poultry population. We suggest that improved biosecurity measures and increased vaccination efforts would reduce reliance on antibiotics by these households.


Sign in / Sign up

Export Citation Format

Share Document