Migration and distribution of water and organic matter for activated sludge during coupling magnetic conditioning–horizontal electro-dewatering (CM–HED)

2016 ◽  
Vol 88 ◽  
pp. 93-103 ◽  
Author(s):  
Xu Qian ◽  
Yili Wang ◽  
Huaili Zheng
1989 ◽  
Vol 21 (6-7) ◽  
pp. 609-619 ◽  
Author(s):  
Y.-J. Shao ◽  
David Jenkins

Laboratory and pilot plant experiments on anoxic selector activated sludge systems were conducted on two wastewaters in some cases supplemented with nitrate, acetate or glucose. To prevent bulking sufficient anoxic selector detention time and nitrate levels must be available to reduce selector effluent soluble COD to below 100 mg/l and to reduce readily metabolizable organic matter to virtually zero (< 1 mg/l). Soluble COD/NO3-N removal stoichiometry is in the range 6.0-6.7. Selector systems have elevated soluble substrate removal and denitrification rates compared to CSTR systems. These rates are not affected greatly by temperature (20-25°C) for CSTR sludges but are for selector sludges. Upon exhaustion of nitrate in a selector soluble COD leaks out of the activated sludge in significant amounts. Thiothrix sp. and type 021N denitrify only to NO2 and at much slower rates than Zoogloearamigera does to N2. A sequencing batch system provides an optimistic estimate of the SVI that can be obtained by an anoxic selector system.


2012 ◽  
Vol 178-181 ◽  
pp. 526-530
Author(s):  
Ruo Gu Li ◽  
Yan Qiu Zhang

The step feed model based on the Activated Sludge Model No.1 (ASM1) and the optimum model of the ammonia nitrogen (SNH) removal in wastewater were established. Four aeration tanks under the different step feed ratios were simulated by Matlab Simulink. The results show that single-feeding is conducive to the removal of readily biodegradable substrate (SS) and the growth of heterotrophic organisms (XBH), and to lower the biodegradable substrate (XS) at the same time. The SS, XS, and SNH concentrations are 1.36, 5.98, and 3.02 mg/L respectively in effluent. However, the step-feeding is conducive to the SNH removal, and the autotrophic bacteria (XBA) growth. Under the step feed ratio (25/25/25/25%), the SS, XS, and SNH concentrations are 2.64, 10.79, and 2.61 mg/L respectively. Under the optimum ratio (28.7/23.6/20.4/27.2%), step-feeding could further facilitate the removal of SNH and hinder the removal of organic matter, their concentrations are 2.70, 10.98, and 2.47 mg/L respectively.


2011 ◽  
Vol 63 (4) ◽  
pp. 733-740 ◽  
Author(s):  
E. Sahar ◽  
M. Ernst ◽  
M. Godehardt ◽  
A. Hein ◽  
J. Herr ◽  
...  

The potential of membrane bioreactor (MBR) systems to remove organic micropollutants was investigated at different scales, operational conditions, and locations. The effluent quality of the MBR system was compared with that of a plant combining conventional activated sludge (CAS) followed by ultrafiltration (UF). The MBR and CAS-UF systems were operated and tested in parallel. An MBR pilot plant in Israel was operated for over a year at a mixed liquor suspended solids (MLSS) range of 2.8–10.6 g/L. The MBR achieved removal rates comparable to those of a CAS-UF plant at the Tel-Aviv wastewater treatment plant (WWTP) for macrolide antibiotics such as roxythromycin, clarithromycin, and erythromycin and slightly higher removal rates than the CAS-UF for sulfonamides. A laboratory scale MBR unit in Berlin – at an MLSS of 6–9 g/L – showed better removal rates for macrolide antibiotics, trimethoprim, and 5-tolyltriazole compared to the CAS process of the Ruhleben sewage treatment plant (STP) in Berlin when both were fed with identical quality raw wastewater. The Berlin CAS exhibited significantly better benzotriazole removal and slightly better sulfamethoxazole and 4-tolyltriazole removal than its MBR counterpart. Pilot MBR tests (MLSS of 12 g/L) in Aachen, Germany, showed that operating flux significantly affected the resulting membrane fouling rate, but the removal rates of dissolved organic matter and of bisphenol A were not affected.


1993 ◽  
Vol 28 (1) ◽  
pp. 109-116 ◽  
Author(s):  
Jacob H. Bruus ◽  
Jimmy R. Christensen ◽  
Hanne Rasmussen

Since dewatering equipment is commonly operated only during normal working hours, activated sludge must often be stored in an anaerobic condition prior to conditioning. It is the objective of this study to investigate the influence of anaerobic storage on conditioning requirements and dewatering performance on a laboratory scale. Sludges were collected at two large treatment plants (removal of organic matter, nitrogen and phosphorus) and one small treatment plant (removal of organic matter). Thickened activated sludges from the three wastewater treatment plants were stored anaerobically in the laboratory and analyzed frequently during fourteen days of storage. Both organic and inorganic conditioning was used. Turbidity and Dissolved Organic Carbon (DOC) in the sludge bulk water increased as a result of the anaerobic storage. These parameters indicated a release of colloids, dissolved exopolymers and fermentation waste products such as fatty acids to the bulk water. These constituents consumed additional cationic polyelectrolyte. Filterability at the optimal dosage of polyelectrolyte was not affected by anaerobic storage. Therefore, polyelectrolyte requirements are governed by the bulk water constituents, whereas filterability of the sludge is determined by the degree of sludge floc conditioning. Iron requirements seemed unaffected by anaerobic storage, but lime requirements to obtain good filterability increased with anaerobic storage time.


1985 ◽  
Vol 17 (11-12) ◽  
pp. 315-316
Author(s):  
Mitsumasa Okada ◽  
Ryuichi Sudo

Abstract–Phosphorus removal by biological means in continuous-flow aerobic/ anaerobic activated sludge processes is now in a stage of full-scale operations. The similar aerobic/anaerobic treatment is also found in biological processes for nitrogen removal by nitrification followed by denitrification. These processes are successfully applied not only to continuous-flow system but also to sequencing batch reactor (SBR) activated sludge processes, whereas little attempts have been reported on phosphorus removal in SBR activated sludge processes. It is most probable that both phosphorus and nitrogen in addition to organic matter can be removed by the SBR activated sludge processes if aerobic and anaerobic treatments were properly incorporated into a cycle of batch operation. Laboratory scale experiments on aerobic/anaerobic operations of the SBR processes were conducted aiming at simultaneous removal of phosphorus, nitrogen, and organic matter without any addition of chemicals. SBR of 5 1 in working volume was fed with synthetic wastewater in which TOC = 120-200 mg/l, BOD = 200-400 mg/l, total phosphorus = 6-12 mg/1 and total nitrogen = 36-60 mg/1. The following sequence of operations were conducted in a batch cycle; 1) mixing and inflow of wastewater, 2) aeration and mixing, 3) mixing, 4) aeration and mixing, 5) settling and 6) decanting. It was secured from continuous monitoring of dissolved oxygen concentration in the mixed liquor that both anaerobic (stages 1 and 3) and aerobic (stages 2 and 4) treatments were repeated twice in a cycle. In some operations, stages 3 and 4 were omitted for comparison, i.e. anaerobic and aerobic treatments were conducted only once per cycle. The volume of mixed liquor before the inflow of wastewater at the beginning of a cycle (low level) ranged from 33 % to 50 % of that during full volume stages from 2 to 5 (high level). In stage 6, the supernatant was discharged down to the low level and followed by the next cycle of operation. The length of time for a cycle of operation was β h or 9.5 h. Among various types of operations tried, the following sequence was the best in the quality of effluent; 1) 2 h for mixing and inflow, 2) 3 h for aeration and mixing, 3) 3 h for mixing, 4) 20 min for aeration and mixing, 5) 1 h for settling, and 6) 10 min for decanting in a cycle of 9.5 h if influent BOD, total phosphorus and total nitrogen concentrations were 400 mg/1, 12 mg/1 and 60 mg/1, respectively, and BOD loading was 0.68 kg/cu m/d. Total phosphorus and nitrogen concentrations in the effluent were 1.2 mg/1 and 8.0 mg/1, respectively. Similar results were obtained in operations where anaerobic and aerobic treatments were repeated twice in a cycle. In operations where effluent quality was satisfactory, release of phosphorus from the sludge was observed in stage 1. The reactor concentration of filterable total phosphorus (FTP) increased rapidly and its maximum value observed at the end of the stage was ca. 50 mg/1. Phosphorus uptake under aerobic condition (stage 2) decreased FTP to the level of effluent FTP. The luxury uptake of phosphorus by the sludge was noted, i.e. phosphorus content in the sludge ranged from 2.0 % to 4.0 %(w/w). The release of phosphorus from the sludge and subsequent luxury uptake were not significant during stages 3 to 4, hence, further removal of phosphorus was not remarkable. Nitrate nitrogen concentration increased during stage 2 by nitrification. Denitrification was noted both in stages 1 and 3. In stage 1, filterable total organic carbon (FTOC) increased by the inflow of wastewater. It should be, therefore, utilized for denitrification as hydrogen donor. FTOC decreased rapidly after the initiation of aeration in stage 2 and little FTOC remained after the latter half of stage 2. Intracellular organic substances of the sludge, therefore, were regarded to be utilized for denitrification without any addition of chemicals at stage 3. In the best operation, from 50% to 70% out of total nitrogen inflow was removed by denitrification. Effluent BOD was less than 10 mg/l. Although further investigations would be required to determine optimum scheduling in a cycle such as the combination of anaerobic and aerobic periods, the ratio between low and high levels in the reactor, the length of a cycle, and etc. for a given wastewater, the SBR activated sludge process would be a promising wastewater treatment process for simultaneous removal of phosphorus, nitrogen and organiC matter by a single reactor. In spite of complicated operational sequence, full scale automatic operations of SBR activated sludge process would be possible economically even in small-scale plants by using recently advanced microcomputer technology.


Sign in / Sign up

Export Citation Format

Share Document