scholarly journals Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm

2021 ◽  
Vol 194 ◽  
pp. 116922
Author(s):  
K.L.G. Learbuch ◽  
H. Smidt ◽  
P.W.J.J. van der Wielen
2018 ◽  
Vol 16 (6) ◽  
pp. 914-920 ◽  
Author(s):  
Qing Wu ◽  
Shuqun Li ◽  
Xiaofei Zhao ◽  
Xinhua Zhao

Abstract The abuse of antibiotics is becoming more serious as antibiotic use has increased. The sulfa antibiotics, sulfamerazine (SM1) and sulfamethoxazole (SMZ), are frequently detected in a wide range of environments. The interaction between SM1/SMZ and bacterial diversity in drinking water was investigated in this study. The results showed that after treatment with SM1 or SMZ at four different concentrations, the microbial community structure of the drinking water changed statistically significantly compared to the blank sample. At the genus level, the proportions of the different bacteria in drinking water may affect the degradation of the SM1/SMZ. The growth of bacteria in drinking water can be inhibited after the addition of SM1/SMZ, and bacterial community diversity in drinking water declined in this study. Furthermore, the resistance gene sul2 was induced by SM1 in the drinking water.


2015 ◽  
Vol 2015 ◽  
pp. 1-8
Author(s):  
Huirong Lin ◽  
Shuting Zhang ◽  
Song Gong ◽  
Shenghua Zhang ◽  
Xin Yu

The composition and microbial community structure of the drinking water system biofilms were investigated using microstructure analysis and 454 pyrosequencing technique in Xiamen city, southeast of China. SEM (scanning electron microscope) results showed different features of biofilm morphology in different fields of PVC pipe. Extracellular matrix material and sparse populations of bacteria (mainly rod-shaped and coccoid) were observed. CLSM (confocal laser scanning microscope) revealed different distributions of attached cells, extracellular proteins,α-polysaccharides, andβ-polysaccharides. The biofilms had complex bacterial compositions. Differences in bacteria diversity and composition from different tap materials and ages were observed. Proteobacteria was the common and predominant group in all biofilms samples. Some potential pathogens (Legionellales, Enterobacteriales, Chromatiales, and Pseudomonadales) and corrosive microorganisms were also found in the biofilms. This study provides the information of characterization and visualization of the drinking water biofilms matrix, as well as the microbial community structure and opportunistic pathogens occurrence.


2021 ◽  
Author(s):  
Carolin Reitter ◽  
Heike Petzoldt ◽  
Andreas Korth ◽  
Felix Schwab ◽  
Claudia Stange ◽  
...  

AbstractWorldwide, surface waters like lakes and reservoirs are one of the major sources for drinking water production, especially in regions with water scarcity. In the last decades, they have undergone significant changes due to climate change. This includes not only an increase of the water temperature but also microbiological changes. In recent years, increased numbers of coliform bacteria have been observed in these surface waters. In our monitoring study we analyzed two drinking water reservoirs (Klingenberg and Kleine Kinzig Reservoir) over a two-year period in 2018 and 2019. We detected high numbers of coliform bacteria up to 2.4 x 104 bacteria per 100 ml during summer months, representing an increase of four orders of magnitude compared to winter. Diversity decreased to one or two species that dominated the entire water body, namely Enterobacter asburiae and Lelliottia spp., depending on the reservoir. Interestingly, the same, very closely related strains have been found in several reservoirs from different regions. Fecal indicator bacteria Escherichia coli and enterococci could only be detected in low concentrations. Furthermore, fecal marker genes were not detected in the reservoir, indicating that high concentrations of coliform bacteria were not due to fecal contamination. Microbial community revealed Frankiales and Burkholderiales as dominant orders. Enterobacterales, however, only had a frequency of 0.04% within the microbial community, which is not significantly affected by the extreme change in coliform bacteria number. Redundancy analysis revealed water temperature, oxygen as well as nutrients and metals (phosphate, manganese) as factors affecting the dominant species. We conclude that this sudden increase of coliform bacteria is an autochthonic process that can be considered as a mass proliferation or “coliform bloom” within the reservoir. It is correlated to higher water temperatures in summer and is therefore expected to occur more frequently in the near future, challenging drinking water production.HighlightsColiform bacteria proliferate in drinking water reservoirs to values above 104 per 100 mlThe genera Lelliottia and Enterobacter can form these “coliform blooms”Mass proliferation is an autochthonic process, not related to fecal contaminationsIt is related to water temperature and appears mainly in summerIt is expected to occur more often in future due to climate changeGraphical abstract


2018 ◽  
Vol 145 ◽  
pp. 73-82 ◽  
Author(s):  
Ruben Props ◽  
Peter Rubbens ◽  
Michael Besmer ◽  
Benjamin Buysschaert ◽  
Jurg Sigrist ◽  
...  

Pathogens ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 957
Author(s):  
Abraham C. Cullom ◽  
Rebekah L. Martin ◽  
Yang Song ◽  
Krista Williams ◽  
Amanda Williams ◽  
...  

Growth of Legionella pneumophila and other opportunistic pathogens (OPs) in drinking water premise plumbing poses an increasing public health concern. Premise plumbing is constructed of a variety of materials, creating complex environments that vary chemically, microbiologically, spatially, and temporally in a manner likely to influence survival and growth of OPs. Here we systematically review the literature to critically examine the varied effects of common metallic (copper, iron) and plastic (PVC, cross-linked polyethylene (PEX)) pipe materials on factors influencing OP growth in drinking water, including nutrient availability, disinfectant levels, and the composition of the broader microbiome. Plastic pipes can leach organic carbon, but demonstrate a lower disinfectant demand and fewer water chemistry interactions. Iron pipes may provide OPs with nutrients directly or indirectly, exhibiting a high disinfectant demand and potential to form scales with high surface areas suitable for biofilm colonization. While copper pipes are known for their antimicrobial properties, evidence of their efficacy for OP control is inconsistent. Under some circumstances, copper’s interactions with premise plumbing water chemistry and resident microbes can encourage growth of OPs. Plumbing design, configuration, and operation can be manipulated to control such interactions and health outcomes. Influences of pipe materials on OP physiology should also be considered, including the possibility of influencing virulence and antibiotic resistance. In conclusion, all known pipe materials have a potential to either stimulate or inhibit OP growth, depending on the circumstances. This review delineates some of these circumstances and informs future research and guidance towards effective deployment of pipe materials for control of OPs.


Author(s):  
Zizhen Zhou ◽  
Tinlin Huang ◽  
Weijin Gong ◽  
Yang Li ◽  
Yue Liu ◽  
...  

Field research on the performance of pollutant removal and the structure of the microbial community was carried out on a drinking water reservoir. After one month of operation of a water-lifting aeration system, the water temperature difference between the bottom and the surface decreased from 9.9 to 3.1 °C, and the concentration of the dissolved oxygen (DO) in the bottom layer increased from 0 to 4.2 mg/L. The existing stratification in the reservoir was successfully eliminated. Total nitrogen (TN), total phosphorus (TP), and total organic carbon (TOC) concentrations were reduced by 47.8%, 66.7%, and 22.9%, respectively. High-throughput sequencing showed that Proteobacteria, Bacteroides, and Actinomycetes accounted for 67.52% to 78.74% of the total bacterial population. Differences in the bacterial changes were observed between the enhanced area and the control area. With the operation of the water-lifting aeration system, the populations of bacteria of the main genera varied temporally and spatially. Principal component analysis pointed out a clear evolution in the vertical distribution of the microbial structure controlled by the operation of the aeration system. Permutational analysis of variance showed a significant difference in the microbial community (p < 0.01). Redundancy analysis showed that physical (water temperature, DO) and chemical environmental factors (Chl-a, TOC, TN) were the key factors affecting the changes in the microbial communities in the reservoir water. In addition, a hierarchical partitioning analysis indicated that T, Chl-a, ORP, TOC, pH, and DO accounted for 24.1%, 8.7%, 6.7%, 6.2%, 5.8%, and 5.1% of such changes, respectively. These results are consistent with the ABT (aggregated boosted tree) analysis for the variations in the functional bacterial community, and provide a theoretical basis for the development and application of biotechnology.


2014 ◽  
Vol 700 ◽  
pp. 519-524 ◽  
Author(s):  
Jie Liu ◽  
Yan Li Ding ◽  
Mark Bartlam ◽  
Ying Ying Wang

Underground water is directly used as drinking water in most rural areas of developing countries due to limitations in infrastructure. As an important indicator of drinking water quality, however, microbial quality has been largely ignored for a long time. Microbial quality poses a great threat to the safety of underground drinking water, especially in rural areas. The current study compared microbial abundance and community structure of three different water sources, i.e. underground water, Poyang Lake and Hai River, combined with flow cytometry (FCM) and denaturing gradient gel electrophoresis (DGGE). FCM results showed that the bacterial concentration of underground water is the lowest (1.037×106cell/ml) of the three water sources, but still approximates that of the Poyang Lake. The removal rate of bacteria after filtration through a 0.45μm-pore-size filter is 98.16% in underground water. The removal rate for Poyang Lake and Hai River is much lower (i.e. 66.57% and 74.17% respectively). DGGE profiles demonstrated that the microbial community structure in underground water shares higher similarity to Poyang Lake (51.0% and 53.1% similarity for bacteria and fungi respectively) than Hai River. The microbial diversity index (i.e. Shannon-Weaver index) for bacteria and fungi are 2.906 and 2.847 respectively in underground water, which is lower than in Poyang Lake. The evenness (i.e. Simpson index) of groundwater was lowest among the three water sources tested. The results suggested that groundwater has a complex microbial community and hence it is critical to apply necessary hygienic barriers to remove microbes for the safety of underground drinking water.


Sign in / Sign up

Export Citation Format

Share Document