A high-resolution reconstruction of Storglaciären mass balance back to 1780/81 using tree-ring data and circulation indices

2007 ◽  
Vol 67 (1) ◽  
pp. 12-20 ◽  
Author(s):  
Hans W. Linderholm ◽  
Peter Jansson ◽  
Deliang Chen

AbstractStorglaciären in northernmost Sweden has the world's longest ongoing continuous mass-balance record, starting in 1946. To extend this mass-balance record, we have reconstructed summer (bS) and winter (bW) mass balances separately back to the mass balance year 1780/81 with annual resolution. We used tree-ring data for bS and a set of circulation indices, based on the sea-level pressure, for bW. Both proxies have correlation coefficients with respective mass balance components of ca. 0.7. The reconstructed net balance (bN) of Storglaciären was well correlated to the observations during 1946–1980 (r = 0.8, p < 0.05). Our reconstruction agrees well with previously obtained results of northern Sweden glacier variability, where the predominantly positive bN years between 1890 and 1910 correspond to the well documented post-Little Ice Age advance of Storglaciären. Furthermore, the results suggest that bS, as a function of summer temperatures, is more important than bW in determining the bN, which is contrary to glaciers in the maritime parts of western Scandinavia. In general, bN has been negative over the last 220 yr, suggesting a predomination of continental conditions over northern Sweden. However, the influence of bW increased in the late twentieth century, indicating a shift to a more oceanic climate regime.

2005 ◽  
Vol 42 ◽  
pp. 163-170 ◽  
Author(s):  
Yuriy M. Kononov ◽  
Maria D. Ananicheva ◽  
Ian C. Willis

AbstractOur ultimate objective is to study the mass-balance variations of Polar Ural glaciers during the last millennium. We use mass-balance data for two glaciers between 1957 and 1981, climate data obtained by instrumental observations during the 20th century, and tree-ring data compiled for the last 1000 years. Because there is a high correlation between measured glacier mass-balance and climate variables, we reconstruct glacier mass balance for the 20th century using regression equations. Similarly, we use regression equations relating measured climatic variables to tree-ring widths to reconstruct glacier mass balance for the last millennium. According to our reconstructions, the most extensive period of negative mass balance occurred in the late 10th/early 11th century AD, which corresponds to the Medieval Warm Period. A prolonged period of positive glacier mass balance began after the mid-11th century, a time commonly accepted as the onset of the Little Ice Age. This cooling period has three maxima, the last from the early 17th to mid-19th century. Until the beginning of the 20th century, cumulative mass balance over the last millennium varied between ±8mw.e. However, glacier mass balance in the second half of the 20th century is lower than it has been for the past millennium, and cumulative mass balance is now -10mw.e. Polar Ural glaciers are important indicators of regional climate change and should be incorporated into a worldwide glacier-monitoring programme.


2016 ◽  
Vol 12 (7) ◽  
pp. 1485-1498 ◽  
Author(s):  
Liangjun Zhu ◽  
Yuandong Zhang ◽  
Zongshan Li ◽  
Binde Guo ◽  
Xiaochun Wang

Abstract. We present a reconstruction of July–August mean maximum temperature variability based on a chronology of tree-ring widths over the period AD 1646–2013 in the northern part of the northwestern Sichuan Plateau (NWSP), China. A regression model explains 37.1 % of the variance of July–August mean maximum temperature during the calibration period from 1954 to 2012. Compared with nearby temperature reconstructions and gridded land surface temperature data, our temperature reconstruction had high spatial representativeness. Seven major cold periods were identified (1708–1711, 1765–1769, 1818–1821, 1824–1828, 1832–1836, 1839–1842, and 1869–1877), and three major warm periods occurred in 1655–1668, 1719–1730, and 1858–1859 from this reconstruction. The typical Little Ice Age climate can also be well represented in our reconstruction and clearly ended with climatic amelioration at the late of the 19th century. The 17th and 19th centuries were cold with more extreme cold years, while the 18th and 20th centuries were warm with less extreme cold years. Moreover, the 20th century rapid warming was not obvious in the NWSP mean maximum temperature reconstruction, which implied that mean maximum temperature might play an important and different role in global change as unique temperature indicators. Multi-taper method (MTM) spectral analysis revealed significant periodicities of 170-, 49–114-, 25–32-, 5.7-, 4.6–4.7-, 3.0–3.1-, 2.5-, and 2.1–2.3-year quasi-cycles at a 95 % confidence level in our reconstruction. Overall, the mean maximum temperature variability in the NWSP may be associated with global land–sea atmospheric circulation (e.g., ENSO, PDO, or AMO) as well as solar and volcanic forcing.


2004 ◽  
Vol 62 (1) ◽  
pp. 9-18 ◽  
Author(s):  
Emma Watson ◽  
Brian H Luckman

Tree rings were used to reconstruct mass balance for Peyto Glacier in the Canadian Rocky Mountains from A.D. 1673 to 1994. Summer balance was reconstructed from tree-ring estimates of summer temperature and precipitation in the Canadian Rockies. Winter balance was derived from tree-ring data from sites bordering the Gulf of Alaska and in western British Columbia. The models for winter and summer balance each explain over 40% of the variance in the appropriate mass-balance series. Over the period 1966–1994 the correlation between the reconstructed and measured net balances is 0.71. Strong positive mass balances are reconstructed for 1695–1720 and 1810–1825, when higher winter precipitation coincided with reduced ablation. Periods of reconstructed positive mass balance precede construction of terminal moraines throughout the Canadian Rockies ca. 1700–1725 and 1825–1850. Positive mass balances in the period 1845–1880 also correspond to intervals of glacier readvance. Mass balances were generally negative between 1760 and 1805. From 1673 to 1883 the mean annual net balance was +70 mm water equivalent per year (w.e./yr.), but it averaged −317 mm w.e./yr from 1884 to 1994. This reconstructed mass balance history provides a continuous record of glacier change that appears regionally representative and consistent with moraine and other proxy climate records.


2005 ◽  
Vol 42 ◽  
pp. 303-310 ◽  
Author(s):  
Peter Jansson ◽  
Hans W. Linderholm

AbstractAssessing climate change and its effects on the cryosphere is important, and individual proxies are commonly used for such assessments. We have investigated the possibility of combining glacier mass balance and tree-ring data to better understand regional climate variability in Scandinavia. There are substantial differences between climate information in mass-balance and tree-ring data. Summer balance (bS) is strongly related to summer temperature, while winter balance (bW) is less readily interpreted in terms of a climate signal. Tree rings are good summer temperature proxies, but due to the complexity of tree growth factors (e.g. the effect of the previous winter’s climate) tree-ring records do not exclusively represent summer temperatures. Combining bS and tree-ring records will not likely yield additional summer climate information. The relationship of mass balance with the Arctic Oscillation is stronger than with the North Atlantic Oscillation, especially for northernmost Sweden, whereas no such correlations were found for tree-ring data. The agreement between bN records from both maritime south-central Norway and continental northernmost Sweden and tree-ring data from Jämtland, in a maritime/continental climate transition zone, suggests possibilities to combine mass-balance and tree-ring data to provide information about climate over the entire year on interannual timescales.


2013 ◽  
Vol 79 (2) ◽  
pp. 123-137 ◽  
Author(s):  
Nathan L. Malcomb ◽  
Gregory C. Wiles

AbstractGlacier mass-balance reconstructions provide a means of placing relatively short observational records into a longer-term context. In western North America, mass-balance records span four to five decades and capture a relatively narrow window of glacial behavior over an interval that was dominated by warming and ablation. We use temperature- and moisture-sensitive tree-ring series to reconstruct annual mass balance for six glaciers in the Pacific Northwest and Alaska. Mass-balance models rely on the climatic sensitivity of tree-ring chronologies and teleconnection patterns in the North Pacific. The reconstructions extend through the mid to latter portions of the Little Ice Age (LIA) and explore the role of climate variability in forcing mass balance across multiple environmental gradients. Synchronous positive mass-balance intervals coincide with regional moraine building and solar minima, whereas differences in LIA glacier behavior are related to synoptic climate forcing. Secular warming in the late 19th century to present corresponds with the only multi-decadal intervals of negative mass balance in all glacier reconstructions. This suggests that contemporary retreat in western North America is unique with respect to the last several centuries and that regional patterns of glacier variability are now dominated by global climate forcing.


Radiocarbon ◽  
2019 ◽  
Vol 61 (5) ◽  
pp. 1265-1291 ◽  
Author(s):  
Alan G Hogg ◽  
Timothy J Heaton ◽  
Christopher Bronk Ramsey ◽  
Gretel Boswijk ◽  
Jonathan G Palmer ◽  
...  

ABSTRACTThis research investigates two factors influencing the ability of tree-ring data to provide accurate 14C calibration information: the fitness and rigor of the statistical model used to combine the data into a curve; and the accuracy, precision and reproducibility of the component 14C data sets. It presents a new Bayesian spline method for calibration curve construction and tests it on extant and new Southern Hemisphere (SH) data sets (also examining their dendrochronology and pretreatment) for the post-Little Ice Age (LIA) interval AD 1500–1950. The new method of construction allows calculation of component data offsets, permitting identification of laboratory and geographic biases. Application of the new method to the 10 suitable SH 14C data sets suggests that individual offset ranges for component data sets appear to be in the region of ± 10 yr. Data sets with individual offsets larger than this need to be carefully assessed before selection for calibration purposes. We identify a potential geographical offset associated with the Southern Ocean (high latitude) Campbell Island data. We test the new methodology for wiggle-matching short tree-ring sequences and use an OxCal simulation to assess the likely precision obtainable by wiggle-matching in the post-LIA interval.


2021 ◽  
Author(s):  
Samuli Helama ◽  
Markus Stoffel ◽  
Richard J. Hall ◽  
Phil D. Jones ◽  
Laura Arppe ◽  
...  

AbstractHolocene climate variability is punctuated by episodic climatic events such as the Little Ice Age (LIA) predating the industrial-era warming. Their dating and forcing mechanisms have however remained controversial. Even more crucially, it is uncertain whether earlier events represent climatic regimes similar to the LIA. Here we produce and analyse a new 7500-year long palaeoclimate record tailored to detect LIA-like climatic regimes from northern European tree-ring data. In addition to the actual LIA, we identify LIA-like ca. 100–800 year periods with cold temperatures combined with clear sky conditions from 540 CE, 1670 BCE, 3240 BCE and 5450 BCE onwards, these LIA-like regimes covering 20% of the study period. Consistent with climate modelling, the LIA-like regimes originate from a coupled atmosphere–ocean–sea ice North Atlantic-Arctic system and were amplified by volcanic activity (multiple eruptions closely spaced in time), tree-ring evidence pointing to similarly enhanced LIA-like regimes starting after the eruptions recorded in 1627 BCE, 536/540 CE and 1809/1815 CE. Conversely, the ongoing decline in Arctic sea-ice extent is mirrored in our data which shows reversal of the LIA-like conditions since the late nineteenth century, our record also correlating highly with the instrumentally recorded Northern Hemisphere and global temperatures over the same period. Our results bridge the gaps between low- and high-resolution, precisely dated proxies and demonstrate the efficacy of slow and fast components of the climate system to generate LIA-like climate regimes.


2019 ◽  
Vol 32 (24) ◽  
pp. 8713-8731 ◽  
Author(s):  
Lucie J. Lücke ◽  
Gabriele C. Hegerl ◽  
Andrew P. Schurer ◽  
Rob Wilson

Abstract Quantifying past climate variation and attributing its causes improves our understanding of the natural variability of the climate system. Tree-ring-based proxies have provided skillful and highly resolved reconstructions of temperature and hydroclimate of the last millennium. However, like all proxies, they are subject to uncertainties arising from varying data quality, coverage, and reconstruction methodology. Previous studies have suggested that biological-based memory processes could cause spectral biases in climate reconstructions. This study determines the effects of such biases on reconstructed temperature variability and the resultant implications for detection and attribution studies. We find that introducing persistent memory, reflecting the spectral properties of tree-ring data, can change the variability of pseudoproxy reconstructions compared to the surrogate climate and resolve certain model–proxy discrepancies. This is especially the case for proxies based on ring-width data. Such memory inflates the difference between the Medieval Climate Anomaly and the Little Ice Age and suppresses and extends the cooling in response to volcanic eruptions. When accounting for memory effects, climate model data can reproduce long-term cooling after volcanic eruptions, as seen in proxy reconstructions. Results of detection and attribution studies show that signals in reconstructions as well as residual unforced variability are consistent with those in climate models when the model fingerprints are adjusted to reflect autoregressive memory as found in tree rings.


2014 ◽  
Vol 41 (3) ◽  
pp. 265-277 ◽  
Author(s):  
Samuli Helama ◽  
Matti Vartiainen ◽  
Jari Holopainen ◽  
Hanna Mäkelä ◽  
Taneli Kolström ◽  
...  

Abstract X-ray based tree-ring data of maximum latewood densities (MXD) was combined for south-eastern Finland. This data originated from subfossil and modern pine (Pinus sylvestris L.) materials comprising a continuous dendroclimatic record over the past millennium. Calibrating and verifying the MXD chronologies against the instrumental temperature data showed a promising opportunity to reconstruct warm-season (May through September) temperature variability. A new palaeotemperature record correlated statistically significantly with the long instrumental temperature records in the region and adjacent areas since the 1740s. Comparisons with tree-ring based (MXD and tree-ring width) reconstructions from northern Fennoscandia and northern Finland exhibited consistent summer temperature variations through the Medieval Climate Anomaly, Little Ice Age, and the 20th century warmth. A culmination of the LIA cooling during the early 18th century appeared consistently with the Maunder Minimum, when the solar activity was drastically reduced. A number of coolest reconstructed events between AD 1407 and 1902 were coeval to years of crop failure and famine as documented in the agro-historical chronicles. Results indicate an encouraging possibility of warm-season temperature reconstructions using middle/south boreal tree-ring archives to detail and enhance the understanding of past interactions between humans, ecosystems and the earth.


2012 ◽  
Vol 8 (4) ◽  
pp. 3871-3900
Author(s):  
A. Coppola ◽  
G. Leonelli ◽  
M. C. Salvatore ◽  
M. Pelfini ◽  
C. Baroni

Abstract. Mountain climate is generally strongly conditioned by the site-specific topographic characteristics. Detailed reconstructions of climate parameters for pre-instrumental periods in these mountain areas, suffering of glacial retreat caused by recent global warming, are needed in the view of a better comprehension of the environmental dynamics. We present here the first reconstruction of early summer (June–July) mean temperature for the Adamello-Presanella Group (Central European Alps, 45°54'–46°19' N; 10°21'–10°53' E), one of the most glaciarized mountain Group of the Central Italian Alps. The reconstruction has been based on four larch tree-ring width chronologies derived from living trees sampled in four valleys surrounding the Group. The reconstruction spans from 1596 to 2004 and accounts for about 35% of the temperature variance. The statistical verification of the reconstruction demonstrates the positive skill of the tree-ring data set in tracking temperature variability, but a divergence is visible starting from about 1980 between actual and reconstructed temperature, which slightly underestimate instrumental data. An analysis of moving mean sensitivity over a time window of thirty years evidences a decrement of this parameter in recent times, which is likely related to the noticed divergence and indicates a recent more complacent response to climate of larch at the tree-line.


Sign in / Sign up

Export Citation Format

Share Document