Prediction of compressive strength of fly ash concrete by new apparent activation energy function

2003 ◽  
Vol 33 (7) ◽  
pp. 965-971 ◽  
Author(s):  
Sang-Hun Han ◽  
Jin-Keun Kim ◽  
Yon-Dong Park
2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


1988 ◽  
Vol 136 ◽  
Author(s):  
Ashaari B. Mohamad ◽  
David L. Gress

ABSTRACTRefuse-derived-fuel (RDF) consisting mainly of waste paper and plastics is a viable fuel source for the production of power. An experimental test burn partially substituting coal with RDF was undertaken by the Public Service of New Hampshire at the Merrimack Power Station.Five percent and ten percent RDF were substituted, on a BTU basis, for coal in the test bums. The chemical and physical properties of the resulting fly ash were determined. Twelve test burn days were run with 4 days of 5% RDF and 8 days of 10% RDF. Emphasis was placed on investigating the effect of the RDF fly ash on Portland cement concrete.Most of the chemical and physical properties of the coal-RDF fly ash were found to be comparable with ordinary coal fly ash except for the amount of cadmium and lead, the pozzolanic activity index and the compressive strength of fly ash concrete. Cadmium and lead were at average levels of 5.1 ppm and 102.6 ppm for the 5% RDF, and 7.8 ppm and 198.3 ppm for the 10% RDF, respectively. Although the pozzolanic activity index of coal-RDF fly ash increases over normal coal fly ash, preliminary results show that the 28-day compressive strength of concrete with direct replacement of cement and sand decreases by up to 30%. Leaching tests on crushed concrete were conducted to evaluate the environmental effect of acid rain.


2018 ◽  
Vol 70 (11) ◽  
pp. 541-557 ◽  
Author(s):  
Gollapalli S. Vijaya Bhaskara ◽  
Kanchi Balaji Rao ◽  
Madambikkattil B. Anoop

2010 ◽  
Vol 150-151 ◽  
pp. 1026-1033 ◽  
Author(s):  
Ming Hui Liu ◽  
Yuan Feng Wang

The effect of fly ash in improving the mechanical properties of concrete is investigated and the existing concrete strength development models are studied. Based on the chemic reactivity properties between fly ash and cement, an appropriate concrete strength model are chosen, and a new model for the fly ash strength factor combing Maturity method is built up and the factors are regressed by existing experimental datum. A total of 24 concretes, including two concretes were produced with two partial fly ash replacement ratios (23.7%, 32.7%). The cubic samples produced from ash fly concrete were demoulded after a day, and cured at standard temperature ( in GB/T 50081-2002) with 100% relative humidity until 28 days, then cured in water. The compressive strength tests were carried out on the cubic specimens at different ages. The compressive strength with time was evaluated by using the new predicted model. It was found that the calculated results by new method are fit the experimental data well.


2017 ◽  
Vol 886 ◽  
pp. 159-163 ◽  
Author(s):  
Suppachai Sinthaworn

Slump of fresh concrete, compressive strength and water penetration depth under pressure of fly ash concrete incorporate with quarry waste as fine aggregate were investigated. The cementitious materials of the concrete includes ordinary Portland cement 80% and fly ash 20% by weight of cementitious. The mix proportions of the concrete were set into two classes of compressive strength. The results show that fly ash enhances workability of both concretes (normal concrete and concrete incorporate with quarry waste). Increasing the percentage of quarry dusts as fine aggregate in concrete seem negligible effect on the compressive strength whereas adding fly ash shows a slightly improve the compressive strength in the case of cohesive concrete mixture. Besides, adding the suitable amount of fly ash could improve the permeability of concrete. Therefore, fly ash could be a good admixture to improve the water resistant of normal strength concrete and also could be a supplemental material to improve the compressive strength of normal high strength concrete.


2011 ◽  
Vol 250-253 ◽  
pp. 307-312 ◽  
Author(s):  
Muthuramalingam Jayakumar ◽  
M. Salman Abdullahi

Even though the use of fly ash in concrete is nowadays a common practice, its relatively slow pozzolanic reactivity hinders its greater utilization; hence efficient methods of activation are on demand. This study was carried out to evaluate the influence of lime as a chemical activator on the mechanical and durability properties of high strength fly ash concrete. Mixtures were made with 0, 30, 40, and 50% of cement replaced by low calcium fly ash. Corresponding mixtures were also made with the same amount of fly ash and addition of 10% of lime to each mixture. For each concrete mixture, slump, compressive strength, water absorption, sorptivity, apparent volume of permeable voids, and resistance to chloride-ion penetration were measured. The results obtained showed that addition of lime improved the compressive strength significantly at all ages. The strength of all the fly ash mixtures containing lime surpassed that of the corresponding Portland cement mix at 60 days. Addition of lime also improved the sorptivity and resistance to chloride-ion penetration of the fly ash concrete. It however increases the water absorption and the volume of permeable voids of the fly ash concrete.


2011 ◽  
Vol 250-253 ◽  
pp. 178-181
Author(s):  
Ya Ding Zhao ◽  
Xue Ying Li ◽  
Ling Chao Kong ◽  
Wei Du

Under variable temperature curing conditions(30 oC ~70 oC), concrete with fly ash whose compressive strength, flexural strength, and dynamic elastic modulus are better than ones without fly ash.Compared with constant temperature 20oC, 50 oC and 70 oC, variable temperature curing(VTC) is benefit for the improvement of mechanical properties of 30% fly ash concrete, but which is no advantage to improve performance of 50% fly ash concrete.


2011 ◽  
Vol 287-290 ◽  
pp. 1201-1208 ◽  
Author(s):  
Wen Bo Zhang ◽  
Isamu Yoshitake ◽  
Tadashi Saitoh

To propose a prediction formula of compressive strength of concretes containing fly ash (FA concrete), over 1600 strength data are collected from previous studies and discussed in this study. In particular, the study focuses on developing strengths of FA concrete. The study deals with test data of concrete with wide range of FA replacement, namely 0-50% by mass of cement. Compressive strength at age of 7 days has strongly relation to the cement-water ratio, so the strength can be predicted by using only water and cement contents. In addition, early age strengths within 7 days can be estimated by using the Goral curve based on strength ratio. Strength after the age of 7 days can be predicted by using replacement ratio of fly ash because the strength ratios are proportional to the replacement ratio. Based on the findings, a simplified formula for predicting compressive strength at various ages is proposed in the paper.


Sign in / Sign up

Export Citation Format

Share Document