Altered phosphofructokinase mRNA levels but unchanged isoenzyme pattern in brains from patients with Alzheimer's disease

2000 ◽  
Vol 76 (2) ◽  
pp. 411-414 ◽  
Author(s):  
M Bigl ◽  
M Beck ◽  
A.D Bleyl ◽  
V Bigl ◽  
K Eschrich
2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
S Greco ◽  
A Made' ◽  
A.S Tascini ◽  
J Garcia Manteiga ◽  
S Castelvecchio ◽  
...  

Abstract Background BACE1 encodes for β-secretase, the key enzyme involved in β-amyloid (βA) generation, a peptide well known for its involvement in Alzheimer's disease (AD). Of note, heart failure (HF) and AD share several risk factors and effectors. We recently showed that, in the heart of ischemic HF patients, the levels of both BACE1, its antisense RNA BACE1-AS and βA are all increased. BACE1-AS positively regulates the expression of BACE1, triggering βA intracellular accumulation, and its overexpression or βA administration induce cardiovascular-cell apoptosis. Aim To characterize the transcripts of the BACE1 locus and to investigate the molecular mechanisms underpinning BACE1-AS regulation of cell vitality. Methods By PCR and sequencing, we studied in the heart the expression of a variety of antisense BACE1 transcripts predicted by FANTOM CAT Epigenome. We studied BACE1 RNA stability by BrdU pulse chase experiments (BRIC assay). The cellular localization of BACE1-AS RNA was investigated by in situ hybridization assay. BACE1-AS binding RNAs were evaluated by BACE1-AS-MS2-Tag pull-down in AC16 cardiomyocytes followed by RNA-seq. Enriched RNAs were validated by qPCR and analysed by bioinformatics comparison with publicly available gene expression datasets of AD brains. Results We readily detected several antisense BACE1 transcripts expressed in AC16 cardiomyocytes; however, only BACE1-AS RNAs overlapping exon 6 of BACE1 positively regulated BACE1 mRNA levels, acting by increasing its stability. BACE1 silencing reverted cell apoptosis induced by BACE1-AS expression, indicating that BACE1 is a functional target of BACE1-AS. However, in situ hybridization experiments indicated a mainly nuclear localization for BACE1-AS, which displayed a punctuated distribution, compatible with chromatin association and indicative of potential additional targets. To identify other BACE1-AS binding RNAs, a BACE1-AS-MS2-tag pull-down was performed and RNA-seq of the enriched RNAs identified 698 BACE1-AS interacting RNAs in cardiomyocytes. Gene ontology of the BACE1-AS binding RNAs identified categories of relevance for cardiovascular or neurological diseases, such as dopaminergic synapse, glutamatergic synapse, calcium signalling pathway and voltage-gated channel activity. In spite of the differences between brain and heart transcriptomes, BACE1-AS-interacting RNAs identified in cardiomyocytes were significantly enriched in transcripts differentially expressed in AD brains as well as in RNAs expressed by enhancer genomic regions that are significantly hypomethylated in AD brains. Conclusions These data shed a new light on the complexity of BACE1-AS locus and on the existence of RNAs interacting with BACE1-AS with a potential as enhancer-RNAs. Moreover, the dysregulation of the BACE1-AS/BACE1/βA pathway may be a common disease mechanism shared by cardiovascular and neurological degenerative diseases. Funding Acknowledgement Type of funding source: Public grant(s) – National budget only. Main funding source(s): Italian Health Ministery_Ricerca Corrente 2020


2021 ◽  
pp. 1-21
Author(s):  
Masoud Neshan ◽  
Seyed Kazem Malakouti ◽  
Leila Kamalzadeh ◽  
Mina Makvand ◽  
Arezoo Campbell ◽  
...  

Background: Late-onset Alzheimer’s disease (LOAD) is associated with many environmental and genetic factors. The effect of systemic inflammation on the pathogenesis of neurodegenerative diseases such as AD has been strongly suggested. T helper cells (Th) are one of the important components of the immune system and can easily infiltrate the brain in pathological conditions. The development of each Th-subset depends on the production of unique cytokines and their main regulator. Objective: This study aimed to compare the mRNA levels of Th-related genes derived from peripheral blood mononuclear cells of LOAD patients with control. Also, the identification of the most important Th1/Th2 genes and downstream pathways that may be involved in the pathogenesis of AD was followed by computational approaches. Methods: This study invloved 30 patients with LOAD and 30 non-demented controls. The relative expression of T-cell cytokines (IFN-γ, TNF-α, IL-4, and IL-5) and transcription factors (T-bet and GATA-3) were assessed using real-time PCR. Additionally, protein-protein interaction (PPI) was investigated by gene network construction. Results: A significant decrease at T-bet, IFN-γ, TNF-α, and GATA-3 mRNA levels was detected in the LOAD group, compared to the controls. However, there was no significant difference in IL-4 or IL-5 mRNA levels. Network analysis revealed a list of the highly connected protein (hubs) related to mitogen-activated protein kinase (MAPK) signaling and Th17 cell differentiation pathways. Conclusion: The findings point to a molecular dysregulation in Th-related genes, which can promising in the early diagnosis or targeted interventions of AD. Furthermore, the PPI analysis showed that upstream off-target stimulation may involve MAPK cascade activation and Th17 axis induction.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Avijit Banik ◽  
Radhika Amaradhi ◽  
Daniel Lee ◽  
Michael Sau ◽  
Wenyi Wang ◽  
...  

Abstract Background Alzheimer’s disease (AD) causes substantial medical and societal burden with no therapies ameliorating cognitive deficits. Centralized pathologies involving amyloids, neurofibrillary tangles, and neuroinflammatory pathways are being investigated to identify disease-modifying targets for AD. Cyclooxygenase-2 (COX-2) is one of the potential neuroinflammatory agents involved in AD progression. However, chronic use of COX-2 inhibitors in patients produced adverse cardiovascular effects. We asked whether inhibition of EP2 receptors, downstream of the COX-2 signaling pathway, can ameliorate neuroinflammation in AD brains in presence or absence of a secondary inflammatory stimuli. Methods We treated 5xFAD mice and their non-transgenic (nTg) littermates in presence or absence of lipopolysaccharide (LPS) with an EP2 antagonist (TG11-77.HCl). In cohort 1, nTg (no-hit) or 5xFAD (single-hit—genetic) mice were treated with vehicle or TG11-77.HCl for 12 weeks. In cohort 2, nTg (single-hit—environmental) and 5xFAD mice (two-hit) were administered LPS (0.5 mg/kg/week) and treated with vehicle or TG11-77.HCl for 8 weeks. Results Complete blood count analysis showed that LPS induced anemia of inflammation in both groups in cohort 2. There was no adverse effect of LPS or EP2 antagonist on body weight throughout the treatment. In the neocortex isolated from the two-hit cohort of females, but not males, the elevated mRNA levels of proinflammatory mediators (IL-1β, TNF, IL-6, CCL2, EP2), glial markers (IBA1, GFAP, CD11b, S110B), and glial proteins were significantly reduced by EP2 antagonist treatment. Intriguingly, the EP2 antagonist had no effect on either of the single-hit cohorts. There was a modest increase in amyloid–plaque deposition upon EP2 antagonist treatment in the two-hit female brains, but not in the single-hit genetic female cohort. Conclusion These results reveal a potential neuroinflammatory role for EP2 in the two-hit 5xFAD mouse model. A selective EP2 antagonist reduces inflammation only in female AD mice subjected to a second inflammatory insult.


2012 ◽  
Vol 29 (4) ◽  
pp. 863-873 ◽  
Author(s):  
Nancy Beyer ◽  
David T.R. Coulson ◽  
Shirley Heggarty ◽  
Rivka Ravid ◽  
Jan Hellemans ◽  
...  

2015 ◽  
Vol 37 (1) ◽  
pp. 321-330 ◽  
Author(s):  
Zhen Liu ◽  
Cunfu Wang ◽  
Xiao Wang ◽  
Shunliang Xu

Background/Aims: Alzheimer's disease (AD) is one of the most common dementias among aged people, and is clinically characterized by progressive memory loss, behavioral and learning dysfunction and cognitive deficits. So far, this is no cure for AD. A therapeutic effect of transplantation of mesenchymal stem cells (MSCs) into murine model of AD has been reported, but remains to be further improved. Brn-4 is a transcription factor that plays a critical role in neuronal development, whereas the effects of Brn-4 overexpression in transplanted MSCs on AD are unknown. Methods: MSCs were isolated from mouse bone marrow and induced to overexpress antisense of miRNA-937 (as-miR-937) through adeno-associated virus (AAV)-mediated transduction, and purified by flow cytometry based on expression of a GFP co-transgene in the cells. The Brn-4 levels in mouse MSCs were examined in miR-937-modified MSCs by RT-qPCR and by Western blot. These miR-937-modified MSCs were then transplanted into an APP/PS1 transgenic AD model in mice. The effects of saline control, MSCs and asmiR-937 MSCs on AD mice were examined by deposition of amyloid-beta peptide aggregates (Aβ), social recognition test (SR), Plus-Maze Discriminative Avoidance Task (PM-DAT) and the levels of Brain-derived neurotrophic factor (BDNF) in the mouse brain. Results: MSCs expressed high levels of Brn-4 transcripts but low levels of Brn-4 protein. Poor protein vs mRNA levels of Brn-4 in MSCs appeared to result from the presence of high levels of miR-937 in MSCs. miR-937 inhibited translation of Brn-4 mRNA through binding to the 3'-UTR of the Brn-4 mRNA in MSCs. Expression of as-miR-937 significantly increased Brn-4 protein levels in MSCs. Transplantation of as-miR-937-expressing MSCs significantly reduced the deposition of Aβ, increased the levels of BDNF, and significantly improved the appearance in SR and PM-DAT in AD mice. Conclusion: Overexpression of as-miR-937 in MSCs may substantially improve the therapeutic effects of MSCs on AD, possibly through augmenting Brn-4 levels in MSCs.


2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Alessandra Masci ◽  
Roberto Mattioli ◽  
Paolo Costantino ◽  
Simona Baima ◽  
Giorgio Morelli ◽  
...  

β-Amyloid peptide (Aβ) aberrant production and aggregation are major factors implicated in the pathogenesis of Alzheimer’s disease (AD), causing neuronal deathviaoxidative stress. Several studies have highlighted the importance of polyphenolic antioxidant compounds in the treatment of AD, but complex food matrices, characterized by a different relative content of these phytochemicals, have been neglected. In the present study, we analyzed the protective effect on SH-SY5Y cells treated with the fragment Aβ25–35by two crude juices of broccoli sprouts containing different amounts of phenolic compounds as a result of different growth conditions. Both juices protected against Aβ-induced cytotoxicity and apoptotic cell death as evidenced by cell viability, nuclear chromatin condensation, and apoptotic body formation measurements. These effects were mediated by the modulation of the mitochondrial function and of theHSP70gene transcription and expression. Furthermore, the juices upregulated the intracellular glutathione content and mRNA levels or activity of antioxidant enzymes such as heme oxygenase-1, thioredoxin, thioredoxin reductase, and NAD(P)H:quinone oxidoreductase 1viaactivation of NF-E2-related factor 2 (Nrf2). Although the effects of the two juices were similar, the juice enriched in phenolic compounds showed a greater efficacy in inducing the activation of the Nrf2 signalling pathway.


2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Leticia Pérez-Sisqués ◽  
Anna Sancho-Balsells ◽  
Júlia Solana-Balaguer ◽  
Genís Campoy-Campos ◽  
Marcel Vives-Isern ◽  
...  

AbstractRTP801/REDD1 is a stress-regulated protein whose upregulation is necessary and sufficient to trigger neuronal death. Its downregulation in Parkinson’s and Huntington’s disease models ameliorates the pathological phenotypes. In the context of Alzheimer’s disease (AD), the coding gene for RTP801, DDIT4, is responsive to Aβ and modulates its cytotoxicity in vitro. Also, RTP801 mRNA levels are increased in AD patients’ lymphocytes. However, the involvement of RTP801 in the pathophysiology of AD has not been yet tested. Here, we demonstrate that RTP801 levels are increased in postmortem hippocampal samples from AD patients. Interestingly, RTP801 protein levels correlated with both Braak and Thal stages of the disease and with GFAP expression. RTP801 levels are also upregulated in hippocampal synaptosomal fractions obtained from murine 5xFAD and rTg4510 mice models of the disease. A local RTP801 knockdown in the 5xFAD hippocampal neurons with shRNA-containing AAV particles ameliorates cognitive deficits in 7-month-old animals. Upon RTP801 silencing in the 5xFAD mice, no major changes were detected in hippocampal synaptic markers or spine density. Importantly, we found an unanticipated recovery of several gliosis hallmarks and inflammasome key proteins upon neuronal RTP801 downregulation in the 5xFAD mice. Altogether our results suggest that RTP801 could be a potential future target for theranostic studies since it could be a biomarker of neuroinflammation and neurotoxicity severity of the disease and, at the same time, a promising therapeutic target in the treatment of AD.


2008 ◽  
Vol 4 ◽  
pp. T145-T145
Author(s):  
John S.K. Kauwe ◽  
Carlos Cruchaga ◽  
Kevin Mayo ◽  
Chiara Fenoglio ◽  
Sarah Bertelsen ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fanhui Meng ◽  
Jun Li ◽  
Yanqiu Rao ◽  
Wenjun Wang ◽  
Yan Fu

Alzheimer’s disease (AD) is an age-related neurodegenerative disorder, and the few drugs that are currently available only treat the symptoms. Traditional medicine or phytotherapy has been shown to protect against AD. In our previous studies, Gengnianchun (GNC), a traditional Chinese medicine formula with a prolongevity effect, protected against Aβ-induced cytotoxicity in pheochromocytoma cells (PC-12 cells) and hippocampal cells. Here, we investigated the effects and possible mechanisms by which GNC protected against Aβtoxicity using transgenicCaenorhabditis elegansCL4176. Our results showed that GNC effectively delayed the Aβtoxicity-triggered body paralysis of CL4176 worms. GNC decreased Aβby reducing AβmRNA levels. Moreover, GNC significantly reduced reactive oxygen species in the AD model worms compared with the controls. In addition, GNC upregulated the daf-16, sod-3, hsp-16.2 genes, and enhanced DAF-16 translocation from the cytoplasm to the nuclei under oxidative stress conditions. GNC treatment ofC. elegansstrains lacking DAF-16 did not affect the paralysis phenotype. Taken together, these findings suggest that GNC could protect against Aβ-induced toxicity via the DAF-16 pathway inC. elegans. Further studies are required to analyze its effectiveness in more complex animals.


Sign in / Sign up

Export Citation Format

Share Document