High concentrations of 2–5A, the interferon intracellular mediator, in the blood of children with acute viral infections

1989 ◽  
Vol 140 ◽  
pp. 593-604 ◽  
Author(s):  
A. Luxembourg ◽  
L. Laurence ◽  
M. Tardieu ◽  
J.M. Garnier ◽  
E. Dussaix ◽  
...  
2018 ◽  
Vol 13 (10) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Bahare Salehi ◽  
Dima Mnayer ◽  
Beraat Özçelik ◽  
Gokce Altin ◽  
Kadriye Nur Kasapoğlu ◽  
...  

The Lavandula genus, belonging to the Lamiaceae, includes 39 species, with nearly 400 registered cultivars. Lavandula are worldwide plants that occur over the Mediterranean, Europe, North Africa, southwest Asia to southeast India. Lavandula plants have been used since ancient time to flavor and preserved food, to treat diseases including wound healing, sedative, antispasmodic, microbial and viral infections. Numerous researches have described the chemical composition and the primary components of lavender oils are the monoterpenoids (linalool, linalyl acetate, 1,8-cineole, β-ocimene, terpinen-4-ol, and camphor), sesquiterpenoids (β-caryophyllene and nerolidol) and other terpenoid compounds (e.g., perillyl alcohol). The high concentrations of linalyl acetate make them attractive in perfumery, flavoring, cosmetics and soap industries. Currently, data on the antimicrobial activity of lavender plants have been scientifically confirmed. Indeed, lavender essential oils possess wide spectra of biological activities such as antispasmodic, carminative, analgesic, sedative, hypotensive, antiseptic, antimicrobial, antifungal, antidiuretic and general tonic action. In addition, clinical studies support their uses as treatment of health conditions. However, further clinical studies are necessary to define the magnitude of the efficacy, mechanisms of action, optimal doses, long-term safety, and, potential side effects of lavender plants.


2007 ◽  
Vol 53 (8) ◽  
pp. 1527-1533 ◽  
Author(s):  
Nicola Bizzaro ◽  
Elio Tonutti ◽  
Renato Tozzoli ◽  
Danilo Villalta

Abstract Background: Measurement of antibodies to citrullinated peptides or proteins (CP) is a new test for the diagnosis of rheumatoid arthritis (RA). We analyzed the analytical characteristics and diagnostic accuracy of commercially available methods. Methods: We studied 11 commercially available 2nd- and 3rd-generation methods that used various citrullinated antigen substrates: synthetic cyclic peptides, recombinant rat filaggrin, mutated human vimentin, and Epstein–Barr virus- or IgG-derived peptides. We assessed imprecision by measuring samples with low, intermediate, and high concentrations 5 times on each of 5 days. We measured CPs by each of the assays in 100 serum samples from patients with RA and in 202 samples from healthy persons or patients with other autoimmune, viral, or neoplastic diseases. Results: The between-run imprecision (CV) of the methods was between 0.4% and 22%, and the repeatability (within-run imprecision) was 0.5%–19%. The areas under the ROC curves varied between 0.79 (95% CI, 0.72–0.85) and 0.92 (0.88–0.95). At a fixed specificity of 98.5%, the sensitivities ranged from 41% (95% CI, 31%–51%) to 74% (64%–82%). Sensitivities and specificities varied markedly at the manufacturer’s suggested cutoffs. Most false-positive results were recorded in patients with viral infections. The methods that use the original synthetic cyclic CP gave the best and very similar performances, although these methods use different components in their reagent sets (conjugate, type of substrate, dilution, and washing buffers). This finding shows that the antigenic source is the most important variable in determining the diagnostic accuracy of the methods. Conclusions: The analytical imprecision and diagnostic accuracies of commercially available methods for the detection of anti-CP antibodies differ. Careful selection of methods is needed.


2020 ◽  
Vol 17 ◽  
pp. 00080
Author(s):  
Achouak Gueriche ◽  
Albert K. Galiullin ◽  
Vali G. Gumerov ◽  
Ilsiyar G. Karimullina ◽  
Aigul Y. Shaeva

Parainfluenza virus-3 is the most common etiological agent in mixed respiratory diseases of calves with high concentrations of animals. The more severe course of the disease is observed with complications from bacterial or other viral infections. This article presents the results of clinical and epizootic, serological, virological and molecular genetic studies. A cytopathogenic agent was isolated from a pathological material taken from patients with respiratory diseases of calves in a BEK cell culture. Based on the results of serological and molecular biological studies, this isolate (“LD-9”) was identified as the parainfluenza-3 virus in cattle.


2021 ◽  
Vol 5 (1) ◽  
pp. 38
Author(s):  
Praskoviya Boltovets ◽  
Sergii Kravchenko ◽  
Oleksiy Kovalenko ◽  
Borys Snopok

The nanosized composites based on the natural polysaccharides and nanoparticles of noble metals are promising candidates for efficient antiviral drugs. However, the complexity of such objects, their diversity and novelty necessitate the development of new analytical methods for investigation of such supramolecular architectures. In this work, which was recently developed for SPR-based instrumentation, the concept of variative refraction (DViFA, density variations in fixed architectures) was used to elucidate the mechanism of the antiviral action of a polysaccharide with gold nanoparticles grown in it. The SPR data were confirmed by direct biological tests: the effect of the native polysaccharide glucuronoxylomannan (GXM) obtained from the fungus Ganoderma adspersum and gold nanocomposites thereon on the infection of Datura stramonium with tobacco mosaic virus (TMV) was investigated. Both drugs suppress the development of viral infections. However, if for high concentrations the characteristic activity of the composite is somewhat lower than for GXM, then with an increase in dilution, the effectiveness of the composite increases significantly, up to a twofold excess. It has been reasonably suggested that the mechanism of antiviral action is associated with the formation of clusters of viruses that are no longer capable of infecting cells.


2020 ◽  
Vol 21 (14) ◽  
pp. 4972
Author(s):  
Laurel Chandler ◽  
Imran Yusuf ◽  
Michelle McClements ◽  
Alun Barnard ◽  
Robert MacLaren ◽  
...  

Effective treatment of retinal diseases with adeno-associated virus (AAV)-mediated gene therapy is highly dependent on the proportion of successfully transduced cells. However, due to inflammatory reactions at high vector doses, adjunctive treatment may be necessary to enhance the therapeutic outcome. Hydroxychloroquine and chloroquine are anti-malarial drugs that have been successfully used in the treatment of autoimmune diseases. Evidence suggests that at high concentrations, hydroxychloroquine and chloroquine can impact viral infection and replication by increasing endosomal and lysosomal pH. This effect has led to investigations into the potential benefits of these drugs in the treatment of viral infections, including human immunodeficiency virus and severe acute respiratory syndrome coronavirus-2. However, at lower concentrations, hydroxychloroquine and chloroquine appear to exert immunomodulatory effects by inhibiting nucleic acid sensors, including toll-like receptor 9 and cyclic GMP-AMP synthase. This dose-dependent effect on their mechanism of action supports observations of increased viral infections associated with lower drug doses. In this review, we explore the immunomodulatory activity of hydroxychloroquine and chloroquine, their impact on viral infections, and their potential to improve the efficacy and safety of retinal gene therapy by reducing AAV-induced immune responses. The safety and practicalities of delivering hydroxychloroquine into the retina will also be discussed.


Author(s):  
Russell L. Steere ◽  
Eric F. Erbe

It has been assumed by many involved in freeze-etch or freeze-fracture studies that it would be useless to etch specimens which were cryoprotected by more than 15% glycerol. We presumed that the amount of cryoprotective material exposed at the surface would serve as a contaminating layer and prevent the visualization of fine details. Recent unexpected freeze-etch results indicated that it would be useful to compare complementary replicas in which one-half of the frozen-fractured specimen would be shadowed and replicated immediately after fracturing whereas the complement would be etched at -98°C for 1 to 10 minutes before being shadowed and replicated.Standard complementary replica holders (Steere, 1973) with hinges removed were used for this study. Specimens consisting of unfixed virus-infected plant tissue infiltrated with 0.05 M phosphate buffer or distilled water were used without cryoprotectant. Some were permitted to settle through gradients to the desired concentrations of different cryoprotectants.


Author(s):  
William B. McCombs ◽  
Cameron E. McCoy

Recent years have brought a reversal in the attitude of the medical profession toward the diagnosis of viral infections. Identification of bacterial pathogens was formerly thought to be faster than identification of viral pathogens. Viral identification was dismissed as being of academic interest or for confirming the presence of an epidemic, because the patient would recover or die before this could be accomplished. In the past 10 years, the goal of virologists has been to present the clinician with a viral identification in a matter of hours. This fast diagnosis has the potential for shortening the patient's hospital stay and preventing the administering of toxic and/or expensive antibiotics of no benefit to the patient.


Author(s):  
A.J. Mia ◽  
L.X. Oakford ◽  
T. Yorio

The amphibian urinary bladder has been used as a ‘model’ system for studies of the mechanism of action of antidiuretic hormone (ADH) in stimulating transepithelial water flow. The increase in water permeability is accompanied by morphological changes that include the stimulation of apical microvilli, mobilization of microtubules and microfilaments and vesicular membrane fusion events . It has been shown that alterations in the cytosolic calcium concentrations can inhibit ADH transmembrane water flow and induce alterations in the epithelial cell cytomorphology, including the cytoskeletal system . Recently, the subapical granules of the granular cell in the amphibian urinary bladder have been shown to contain high concentrations of calcium, and it was suggested that these cytoplasmic constituents may act as calcium storage sites for intracellular calcium homeostasis. The present study utilizes the calcium antagonist, verapamil, to examine the effect of calcium deprivation on the cytomorphological features of epithelial cells from amphibian urinary bladder, with particular emphasis on subapical granule and microfilament distribution.


Author(s):  
J. R. Hully ◽  
K. R. Luehrsen ◽  
K. Aoyagi ◽  
C. Shoemaker ◽  
R. Abramson

The development of PCR technology has greatly accelerated medical research at the genetic and molecular levels. Until recently, the inherent sensitivity of this technique has been limited to isolated preparations of nucleic acids which lack or at best have limited morphological information. With the obvious exception of cell lines, traditional PCR or reverse transcription-PCR (RT-PCR) cannot identify the cellular source of the amplified product. In contrast, in situ hybridization (ISH) by definition, defines the anatomical location of a gene and/or it’s product. However, this technique lacks the sensitivity of PCR and cannot routinely detect less than 10 to 20 copies per cell. Consequently, the localization of rare transcripts, latent viral infections, foreign or altered genes cannot be identified by this technique. In situ PCR or in situ RT-PCR is a combination of the two techniques, exploiting the sensitivity of PCR and the anatomical definition provided by ISH. Since it’s initial description considerable advances have been made in the application of in situ PCR, improvements in protocols, and the development of hardware dedicated to in situ PCR using conventional microscope slides. Our understanding of the importance of viral latency or viral burden in regards to HIV, HPV, and KSHV infections has benefited from this technique, enabling detection of single viral copies in cells or tissue otherwise thought to be normal. Clearly, this technique will be useful tool in pathobiology especially carcinogenesis, gene therapy and manipulations, the study of rare gene transcripts, and forensics.


Author(s):  
Cesar D. Fermin ◽  
Hans-Peter Zenner

Contraction of outer and inner hair cells (OHC&IHC) in the Organ of Corti (OC) of the inner ear is necessary for sound transduction. Getting at HC in vivo preparations is difficult. Thus, isolated HCs have been used to study OHC properties. Even though viability has been shown in isolated (iOHC) preparations by good responses to current and cationic stimulation, the contribution of adjoining cells can not be explained with iOHC preparations. This study was undertaken to examine changes in the OHC after expossure of the OHC to high concentrations of potassium (K) and sodium (Na), by carefully immersing the OC in either artifical endolymph or perilymph. After K and Na exposure, OCs were fixed with 3% glutaraldehyde, post-fixed in osmium, separated into base, middle and apex and embedded in Araldite™. One μm thick sections were prepared for analysis with the light and E.M. Cross sectional areas were measured with Bioquant™ software.Potassium and sodium both cause isolated guinea pig OHC to contract. In vivo high K concentration may cause uncontrolled and sustained contractions that could contribute to Meniere's disease. The behavior of OHC in the vivo setting might be very different from that of iOHC. We show here changes of the cell cytosol and cisterns caused by K and Na to OHC in situs. The table below shows results from cross sectional area measurements of OHC from OC that were exposed to either K or Na. As one would expect, from the anatomical arrangement of the OC, OHC#l that are supported by rigid tissue would probably be displaced (move) less than those OHC located away from the pillar. Surprisingly, cells in the middle turn of the cochlea changed their surface areas more than those at either end of the cochlea. Moreover, changes in surface area do not seem to differ between K and Na treated OCs.


Sign in / Sign up

Export Citation Format

Share Document