Effects of primary phase morphology on mechanical properties of Al-Si-Mg-Fe alloy in semi-solid slurry casting process

2010 ◽  
Vol 20 ◽  
pp. s857-s861 ◽  
Author(s):  
R. BURAPA ◽  
S. JANUDOM ◽  
T. CHUCHEEP ◽  
R. CANYOOK ◽  
J. WANNASIN
2016 ◽  
Vol 879 ◽  
pp. 530-535
Author(s):  
Xiao Gang Fang ◽  
Shu Sen Wu ◽  
Shu Lin Lü

Mg-Zn-Y alloys containing a thermally stable icosahedral quasicrystal phase (I-phase) will have wide application future on condition that primary α-Mg dendrite and the I-phase can be refined during the casting process. In this research, the microstructure and mechanical properties of the rheo-squeeze casting (RSC) Mg-6Zn-1.4Y alloys have been investigated. The Mg alloy melt was exposed to ultrasonic vibration (USV) with different acoustic power densities from 0 W/mL to 9 W/mL, and then the slurry was formed by squeeze casting. The results show that good semi-solid slurry with fine and spherical α-Mg particles could be obtained with the acoustic power density of 6 W/mL, and the average grain size and shape factor of primary α-Mg were 32 μm and 0.76, respectively. Meanwhile the coarse eutectic I-phase (Mg3Zn6Y) was refined obviously and dispersed uniformly. Compared with the samples without USV, the tensile strength and elongation of the RSC casting samples with 6 W/mL acoustic power density were elevated by 10.6% and 55.5%, respectively.


2014 ◽  
Vol 217-218 ◽  
pp. 332-339 ◽  
Author(s):  
Xiao Kang Liang ◽  
Da Quan Li ◽  
Pascal Côté ◽  
Stephen P. Midson ◽  
Qiang Zhu

The spheroidal grains in billets used for semi-solid casting are generally manufactured by electromagnetic stirring (EMS) during the casting process. This method however, is not economically applicable for small quantities of the thixo billets. Swirled Enthalpy Equilibration Device (SEED) has been developed as a rheocasting process, and the SEED process is of interest for developing new thixo alloys, as well as for optimizing the thixocasting processes for high quality components. The objective of this paper is to compare the microstructure and mechanical properties of aluminum alloy 319s billets and castings produced using EMS and SEED feed materials. The experimental results show that for as-cast billets made from SEED process, a well-developed spheroidal grain structure is distributed throughout the cross-section of the billet, while for as-cast EMS billets, the grain structure is inhomogeneous, i.e., a dendritic structure was present adjacent to the surface of the billet, while a uniform, spheroidal structure was present at the centre. After the thixocasting process, however, the both SEED and EMS billets have well-developed, spheroidal grain structures. Mechanical properties of thixocast and T61 heat treated components are comparable for the both SEED and EMS billets.


2021 ◽  
Author(s):  
mohsen ostadshabani ◽  
Amir Baghani ◽  
Mohammad Reza Rahimipour ◽  
Mansour Razavi ◽  
Mohammad Zakeri ◽  
...  

Abstract Applying aluminum composite in the defense, aerospace and automotive industries depends on how they behave during the elasto-plastic form change. In addition to the factors responsible for changing the form of the alloy, many other factors have an impact on the behavior of the composite form change. In this study, the effect of casting type on the mechanical properties of Al-Si nano composites has been investigated. Due to the proper distribution of reinforcing particles, tensile strength in compo casting sample in semi-solid state is higher than sand casting and squeeze casting. In all samples, the tensile strength of the heat-treated samples has increased by about 30%. Tensile strength in compo casting sample in semi-solid state was obtained with higher nano particle reinforcing particles, which can be explained by the fact that the percentage of elongation in micro samples was lower than that of nano composite samples.


2005 ◽  
Vol 488-489 ◽  
pp. 397-400
Author(s):  
Hwa Chul Jung ◽  
Ye Sik Kim ◽  
Kwang Seon Shin

The demand for magnesium alloys has increased significantly during the past decade in the automotive and electronic industries where weight reduction becomes increasingly an important issue. At present, high-pressure die casting (HPDC) is a dominant process in production of magnesium alloy components. However, magnesium alloy components produced by HPDC suffer from porosity problem and this limits the enhancement of mechanical properties through subsequent heat treatments. The semi-solid processing (SSP) is an emerging new technology for near-net shape production of engineering components, in which the alloys are processed in the temperature range where the liquid and solid phases coexist. The SSP has various advantages over the conventional casting processes. It offers the castings with high integrity and less porosity and allows subsequent heat treatments for enhancement of mechanical properties. For these advantages, the SSP of magnesium alloys has received increasing attention in recent years. In the present study, the continuous casting process was developed for the production of magnesium billets for the subsequent SSP. The process utilizes an electromagnetic stirring system in order to obtain desired microstructure with an excellent degree of homogeneity in both microstructure and composition. Prototypes of an air conditioner cover and a telescope housing were produced using the SSP of the continuously cast magnesium alloy billets.


2013 ◽  
Vol 765 ◽  
pp. 112-116
Author(s):  
Franco Chiesa ◽  
David Levasseur ◽  
Jocelyn Baril

In order to compare the semi-solid SEED casting process to the Low Pressure Permanent Mould process (LPPM), the same part has been produced in aluminium A356 (AlSi7Mg04) using the two methods. The processes were first compared from an operational standpoint: pouring temperature, filling sequence, production rate and mould maintenance. In addition, the metallurgical quality of the castings was evaluated by measuring the tensile properties at 6 locations in the part; the metallographic structures were also compared. Filling and solidification modeling allowed the prediction of the filling sequence and local solidification times everywhere in the casting. The SEED process was generally found to deliver a finer structure, a near net shape casting and a much higher productivity. LPPM parts were more uniform in structural and mechanical properties as verified at 6 locations in the castings.


2006 ◽  
Vol 116-117 ◽  
pp. 501-504 ◽  
Author(s):  
Gonasagren Govender ◽  
L. Ivanchev ◽  
N. Jahajeeah ◽  
R Bëan

The Council for Science and Industrial Research has developed and patented a rheocasting process. The process involves the preparation of semi-solid slurries from liquid metal, by controlled cooling and MHD stirring using induction coils. An industrial prototype was designed and built to test the system in an industrial environment. A semi-solid high pressure die casting cell was set up with an industrial partner and the system was tested under normal production conditions. The production cell consisted of the CSIR rheocasting system, a six axis robot, dosing furnace and 400 ton H-400SC shot controlled Bühler HPDC machine. An engine mounting bracket originally designed for liquid HPDC was redesigned for SSM forming (casting) taking into consideration the flow and thermal behaviour of semi-solid casting process, the function of the component and the required mechanical properties. Although a full production run was not completed due to an ancillary equipment failure, sufficient castings were produced to perform preliminary evaluation of the components. The processing parameters used were, die temperature of 250°C, SSM casting temperature of 580°C ±1Cº and a piston injection velocity of 0.13 m/s. Initial evaluation showed evidence of casting defects due to a combination of factors: die design/manufacture, casting parameters and poor foundry practice. From the mechanical tests it was evident that if the die design, casting parameters and foundry practice are optimized components with adequate mechanical properties can be reliably produced.


2009 ◽  
Vol 628-629 ◽  
pp. 477-482 ◽  
Author(s):  
Hong Min Guo ◽  
Xiang Jie Yang ◽  
J.X. Wang

Rheoforming is becoming the choice of the casting industry which relies on the semi-solid slurry for high integrity structural parts. The potential of rheoforming with LSPSF (Low superheat pouring with a shear field) for aluminum alloys was investigated in the present work. High quality semi-solid slurries of a series of aluminum alloys were manufactured by LSPSF process, such as casting alloy A356, high strength alloy 201, secondary die casting alloy A380 and wrought alloy 2024, 6082 and 7075, in which the primary α-Al presented spherical, small and homogeneous distribution, especially with zero-entrapped liquid. Applications of LSPSF in high pressure die casting process and squeeze casting process were presented. Results showed that LSPSF rheoforming could improve microstructures and increase mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document