13.43 Skeletal muscle glucose utilization rate of lumber muscle can be as useful in estimating whole-body insulin resistance as that of femoral muscle

2001 ◽  
Vol 8 (1) ◽  
pp. S88-S88
Author(s):  
K YONEKURA ◽  
I YOKOYAM ◽  
T OHTAKE ◽  
Y INOUE ◽  
T MOMOSE ◽  
...  
2016 ◽  
Vol 36 (6) ◽  
Author(s):  
Georgia Keramida ◽  
James Hunter ◽  
Adrien Michael Peters

Hepatic steatosis is associated with obesity and insulin resistance. Whether hepatic glucose utilization rate (glucose phosphorylation rate; MRglu) is increased in steatosis and/or obesity is uncertain. Our aim was to determine the separate relationships of steatosis and obesity with MRglu. Sixty patients referred for routine PET/CT had dynamic PET imaging over the abdomen for 30 min post-injection of F-18-fluorodeoxyglucose (FDG), followed by Patlak–Rutland graphical analysis of the liver using abdominal aorta for arterial input signal. The plot gradient was divided by the intercept to give hepatic FDG clearance normalized to hepatic FDG distribution volume (ml/min per 100 ml) and multiplied by blood glucose to give hepatic MRglu (μmol/min per 100 ml). Hepatic steatosis was defined as CT density of ≤40 HU measured from the 60 min whole body routine PET/CT and obesity as body mass index of ≥30 kg/m2. Hepatic MRglu was higher in patients with steatosis (3.3±1.3 μmol/min per 100 ml) than those without (1.7±1.2 μmol/min per 100 ml; P<0.001) but there was no significant difference between obese (2.5±1.6 μmol/min per 100 ml) and non-obese patients (2.1±1.3 μmol/min per 100 ml). MRglu was increased in obese patients only if they had steatosis. Non-obese patients with steatosis still had increased MRglu. There was no association between MRglu and chemotherapy history. We conclude that MRglu is increased in hepatic steatosis probably through insulin resistance, hyperinsulinaemia and up-regulation of hepatic hexokinase, irrespective of obesity.


2008 ◽  
Vol 102 (1) ◽  
pp. 60-68 ◽  
Author(s):  
María E. Oliva ◽  
Adriana G. Chicco ◽  
Yolanda B. Lombardo

The present study investigates the benefits of dietary intake of soya protein upon dyslipidaemia and insulin resistance in rats chronically (8 months) fed a sucrose-rich (63 %) diet (SRD). For this purpose, we analysed the effectiveness of soya protein isolate in improving or reversing these metabolic abnormalities. Wistar rats were fed a SRD for 4 months. By the end of this period, stable dyslipidaemia and insulin resistance were present in the animals. From months 4 to 8, half the animals continued with the SRD and the other half were fed a SRD in which the source of protein casein was substituted by soya. The control group received a diet in which the source of carbohydrate was maize starch. The results showed that: (1) soya protein normalized plasma TAG, cholesterol and NEFA levels in the SRD-fed rats. Moreover, the addition of soya protein reversed the hepatic steatosis. (2) Glucose homeostasis was normalized without changes in circulating insulin levels. Whole-body peripheral insulin sensitivity substantially improved. Besides, soya protein moderately decreases body weight gain limiting the accretion of visceral fat. (3) By shifting the source of dietary protein from casein to soya during the last 4 months of the feeding period it was possible to reverse both the diminished insulin-stimulated glucose oxidation and disposal in the skeletal muscle of SRD-fed rats. This study provides new data showing the beneficial effect of soya protein upon lipid and glucose homeostasis in the experimental model of dyslipidaemia and insulin resistance.


2007 ◽  
Vol 292 (3) ◽  
pp. E654-E667 ◽  
Author(s):  
Dake Qi ◽  
Brian Rodrigues

Insulin resistance is viewed as an insufficiency in insulin action, with glucocorticoids being recognized to play a key role in its pathogenesis. With insulin resistance, metabolism in multiple organ systems such as skeletal muscle, liver, and adipose tissue is altered. These metabolic alterations are widely believed to be important factors in the morbidity and mortality of cardiovascular disease. More importantly, clinical and experimental studies have established that metabolic abnormalities in the heart per se also play a crucial role in the development of heart failure. Following glucocorticoids, glucose utilization is compromised in the heart. This attenuated glucose metabolism is associated with altered fatty acid supply, composition, and utilization. In the heart, elevated fatty acid use has been implicated in a number of metabolic, morphological, and mechanical changes and, more recently, in “lipotoxicity”. In the present article, we review the action of glucocorticoids, their role in insulin resistance, and their influence in modulating peripheral and cardiac metabolism and heart disease.


2020 ◽  
Author(s):  
Feifan Guo ◽  
Yuguo Niu ◽  
Haizhou Jiang ◽  
Hanrui Yin ◽  
Fenfen Wang ◽  
...  

Abstract The current study aimed to investigate the role of endoplasmic reticulum aminopeptidase 1 (ERAP1), a novel hepatokine, in whole-body glucose metabolism. Here, we found that hepatic ERAP1 levels were increased in insulin-resistant leptin-receptor-mutated (db/db) and high-fat diet (HFD)-fed mice. Consistently, hepatic ERAP1 overexpression attenuated skeletal muscle (SM) insulin sensitivity, whereas knockdown ameliorated SM insulin resistance. Furthermore, serum and hepatic ERAP1 levels were positively correlated, and recombinant mouse ERAP1 or conditioned medium with high ERAP1 content (CM-ERAP1) attenuated insulin signaling in C2C12 myotubes, and CM-ERAP1 or HFD-induced insulin resistance was blocked by ERAP1 neutralizing antibodies. Mechanistically, ERAP1 reduced ADRB2 expression and interrupted ADRB2-dependent signaling in C2C12 myotubes. Finally, ERAP1 inhibition via global knockout or the inhibitor thimerosal improved insulin sensitivity. Together, ERAP1 is a hepatokine that impairs SM and whole-body insulin sensitivity, and its inhibition might provide a therapeutic strategy for diabetes, particularly for those with SM insulin resistance.


2001 ◽  
Vol 281 (1) ◽  
pp. E62-E71 ◽  
Author(s):  
Charles Lavigne ◽  
Frédéric Tremblay ◽  
Geneviève Asselin ◽  
Hélène Jacques ◽  
André Marette

In the present study, we tested the hypothesis that fish protein may represent a key constituent of fish with glucoregulatory activity. Three groups of rats were fed a high-fat diet in which the protein source was casein, fish (cod) protein, or soy protein; these groups were compared with a group of chow-fed controls. High-fat feeding led to severe whole body and skeletal muscle insulin resistance in casein- or soy protein-fed rats, as assessed by the euglycemic clamp technique coupled with measurements of 2-deoxy-d-[3H]glucose uptake rates by individual tissues. However, feeding cod protein fully prevented the development of insulin resistance in high fat-fed rats. These animals exhibited higher rates of insulin-mediated muscle glucose disposal that were comparable to those of chow-fed rats. The beneficial effects of cod protein occurred without any reductions in body weight gain, adipose tissue accretion, or expression of tumor necrosis factor-α in fat and muscle. Moreover, L6 myocytes exposed to cod protein-derived amino acids showed greater rates of insulin-stimulated glucose uptake compared with cells incubated with casein- or soy protein-derived amino acids. These data demonstrate that feeding cod protein prevents obesity-induced muscle insulin resistance in high fat-fed obese rats at least in part through a direct action of amino acids on insulin-stimulated glucose uptake in skeletal muscle cells.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrine disorder affecting metabolic, reproductive and mental health of 8-13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 85% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole body insulin-stimulated glucose uptake, however, in PCOS this is reduced about 27% when assessed by hyperinsulinemic euglycemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). Previous work suggested that Transforming Growth Factor Beta (TGFβ) superfamily ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30ng/ml), a novel TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=10) and healthy controls (n=10). AMH negatively affected glucose uptake and insulin signalling increasing p-IRS1 (ser312) in a dose-dependent manner in myotubes from both women with and without PCOS. AMH did not appear to activate the canonical TGFβ/BMP signalling pathway. Conversely, TGFβ1 had an opposite effect in both PCOS and control myotubes cultures, decreasing phosphorylation of IRS1 (ser312) and enhancing glucose uptake via Smad2/3 signalling. In conclusion, these results suggest that AMH may play a role in skeletal muscle IR observed in PCOS, however, further research is required to elucidate its mechanisms of action and broader impact in this syndrome. References: (1) Stepto et al. Hum Reprod 2013 Mar;28(3):777-784. (2) Cassar et al. Hum Reprod 2016 Nov;31(11):2619-2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al. J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372-5381. (5) Raja-Khan et al. Reprod Sci 2014 Jan;21(1):20-31.


1993 ◽  
Vol 265 (4) ◽  
pp. E592-E600 ◽  
Author(s):  
A. B. Jenkins ◽  
L. H. Storlien ◽  
G. J. Cooney ◽  
G. S. Denyer ◽  
I. D. Caterson ◽  
...  

We examined the effect of the long-chain fatty acid oxidation blocker methyl palmoxirate (methyl 2-tetradecyloxiranecarboxylate, McN-3716) on glucose metabolism in conscious rats. Fasted animals [5 h with or without hyperinsulinemia (100 mU/l) and 24 h] received methyl palmoxirate (30 or 100 mg/kg body wt po) or vehicle 30 min before a euglycemic glucose clamp. Whole body and tissue-specific glucose metabolism were calculated from 2-deoxy-[3H]-glucose kinetics and accumulation. Oxidative metabolism was assessed by respiratory gas exchange in 24-h fasted animals. Pyruvate dehydrogenase complex activation was determined in selected tissues. Methyl palmoxirate suppressed whole body lipid oxidation by 40-50% in 24-h fasted animals, whereas carbohydrate oxidation was stimulated 8- to 10-fold. Whole body glucose utilization was not significantly affected by methyl palmoxirate under any conditions; hepatic glucose output was suppressed only in the predominantly gluconeogenic 24-h fasted animals. Methyl palmoxirate stimulated glucose uptake in heart in 24-h fasted animals [15 +/- 5 vs. 220 +/- 28 (SE) mumol x 100 g-1 x min-1], with smaller effects in 5-h fasted animals with or without hyperinsulinemia. Methyl palmoxirate induced significant activation of pyruvate dehydrogenase in heart in the basal state, but not during hyperinsulinemia. In skeletal muscles, methyl palmoxirate suppressed glucose utilization in the basal state but had no effect during hyperinsulinemia; pyruvate dehydrogenase activation in skeletal muscle was not affected by methyl palmoxirate under any conditions. The responses in skeletal muscle are consistent with the operation of a mechanism similar to the Pasteur effect.(ABSTRACT TRUNCATED AT 250 WORDS)


1987 ◽  
Vol 253 (1) ◽  
pp. E33-E39 ◽  
Author(s):  
K. Meszaros ◽  
G. J. Bagby ◽  
C. H. Lang ◽  
J. J. Spitzer

Glucose metabolism of respiratory and nonrespiratory muscles of different fiber composition was investigated in conscious rats. The accumulation of phosphorylated 2-deoxyglucose (2DGP) was increased in skeletal muscles by 56-102% and in diaphragm by 236% at 3 h after treatment with 100 micrograms/100 g endotoxin. The increase was still marked at 24 h, whereas it diminished at 48 h in the diaphragm, abdominal muscle, and white portion of the quadriceps. In the red portion of this muscle 2DGP accumulation was less than that in time-matched controls at 24 and 48 h. Whole gastrocnemius (mixed-fiber types) showed no changes after 24 h. The high 2DGP accumulation in brain remained stable. The retention of 2DGP in tissues, studied by sequential double labeling, did not change 3 h after endotoxin. The lumped constant was similar in the isolated epitrochlear muscles of endotoxemic and control rats. Whole-body glucose utilization (Rd) was increased by 68% 3 h after endotoxin, but it was normal at 24 and 48 h. The increase of glucose utilization by the entire skeletal muscle mass was responsible for approximately 25% of the increase in Rd; therefore it appears that other tissues also contributed significantly to the endotoxin-induced alterations in carbohydrate metabolism.


1995 ◽  
Vol 269 (5) ◽  
pp. E858-E863 ◽  
Author(s):  
P. Ramos ◽  
E. Herrera

To determine whether sustained exaggerated hyperinsulinemia in normoglycemic rats modifies insulin responsiveness during pregnancy, 17-day-pregnant and virgin rats were studied after receiving a continuous intravenous infusion (35 ml/day) of either 50% glucose or bidistilled water (controls) for 72 h. Plasma glucose was unchanged, whereas insulin was highly increased, and the effect was more marked in pregnant than in virgin rats. Insulin responsiveness, estimated under the hyperinsulinemic euglycemic clamp with 0.8 IU insulin.h-1.kg-1, was lower in control pregnant than in virgin rats but higher in pregnant than in virgin rats in those that had received the glucose infusion. The tissue glucose utilization metabolic index (GUI) was estimated with 2-deoxy-D-[1-3H]glucose in the clamped rats. The GUI was lower in heart, white- and red-fiber skeletal muscle, and adipose tissue in control pregnant rats than in control virgin rats, and, although the glucose infusion decreased that index in both red-fiber muscle and adipose tissue in virgin rats, glucose increased the index in red-fiber muscle in pregnant rats to the level found in virgin controls. Results therefore show that, when unaccompanied by hypoglycemia, sustained exaggerated hyperinsulinemia decreases insulin responsiveness in virgin rats but reverts insulin resistance in late-pregnant rats.


Sign in / Sign up

Export Citation Format

Share Document