scholarly journals Characteristics of ethoxylated fatty amine emulsion: Effects on the wettability and permeability of silicate formation under various pH conditions

2015 ◽  
Vol 42 (1) ◽  
pp. 138-141 ◽  
Author(s):  
Yanjun REN ◽  
Guancheng JIANG ◽  
Dujian ZHENG ◽  
Shilin SUN ◽  
Yuxiu AN ◽  
...  
Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 105
Author(s):  
Yifan Yang ◽  
Shiyong Tao ◽  
Zhichun Dong ◽  
Jing Xu ◽  
Xiang Zhang ◽  
...  

Because of the diversification of industries in developing cities, the phenomenon of the simultaneous contamination of various kinds of pollutants is becoming common, and the environmental process of pollutants in multi-contaminated environmental mediums has attracted attention in recent years. In this study, p-arsanilic acid (ASA), a kind of organic arsenic feed additive that contains the arsenic group in a chemical structure, is used as a typical contaminant to investigate its adsorption on iron oxides and its implication for contaminated soils. The adsorption kinetics on all solids can be fitted to the pseudo-second-order kinetic model well. At the same mass dosage conditions, the adsorption amount per unit surface area on iron oxides follows the order α-FeOOH > γ-Fe2O3 > α-Fe2O3, which is significantly higher than that for actual soil, because of the lower content of iron oxides in actual soil. Lower pH conditions favor ASA adsorption, while higher pH conditions inhibit its adsorption as a result of the electrostatic repulsion and weakened hydrophobic interaction. The presence of phosphate also inhibits ASA adsorption because of the competitive effect. Correlations between the amount of ASA adsorption in actual soil and the Fe2O3 content, total phosphorus content, arsenic content, and organic matter content of actual soil are also investigated in this work, and a moderate positive correlation (R2 = 0.630), strong negative correlation (R2 = 0.734), insignificant positive correlation (R2 = 0.099), and no correlation (R2 = 0.006) are found, respectively. These findings would help evaluate the potential hazard of the usage of organic arsenic feed additives, as well as further the understanding of the geochemical processes of contaminants in complicated mediums.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 633
Author(s):  
Firdaous Fainassi ◽  
Noamane Taarji ◽  
Fatiha Benkhalti ◽  
Abdellatif Hafidi ◽  
Marcos A. Neves ◽  
...  

The surface-active and emulsifying properties of crude aqueous ethanolic extracts from untreated olive oil cake (OOC) were investigated. OOC extracts contained important concentrations of surface-active components including proteins, saponins and polyphenols (1.2–2.8%, 7.8–9.5% and 0.7–4.5% (w/w), respectively) and reduced the interfacial tension by up to 46% (14.0 ± 0.2 mN m−1) at the oil–water interface. The emulsifying ability of OOC extracts was not correlated, however, with their interfacial activity or surface-active composition. Eighty percent aqueous ethanol extract produced the most stable oil-in-water (O/W) emulsions by high-pressure homogenization. The emulsions had average volume mean droplet diameters of approximately 0.4 µm and negative ζ-potentials of about -45 mV, and were stable for up to 1 month of storage at 5, 25 and 50 °C. They were sensitive, however, to acidic pH conditions (<5) and NaCl addition (≥25 mM), indicating that the main stabilization mechanism is electrostatic due to the presence of surface-active compounds with ionizable groups, such as saponins.


Chemosphere ◽  
2020 ◽  
pp. 128901
Author(s):  
Yin Liu ◽  
Qing Huang ◽  
Wen Hu ◽  
Jiemin Qin ◽  
Yingrui Zheng ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (14) ◽  
pp. 4332
Author(s):  
Fatemeh Kenari ◽  
Szilárd Molnár ◽  
Pál Perjési

Several biological effects of chalcones have been reported to be associated with their thiol reactivity. In vivo, the reactions can result in the formation of small-molecule or protein thiol adducts. Both types of reactions can play a role in the biological effects of this class of compounds. Progress of the reaction of 4-methyl- and 4-methoxychalcone with glutathione and N-acetylcysteine was studied by the HPLC-UV-VIS method. The reactions were conducted under three different pH conditions. HPLC-MS measurements confirmed the structure of the formed adducts. The chalcones reacted with both thiols under all incubation conditions. The initial rate and composition of the equilibrium mixtures depended on the ratio of the deprotonated form of the thiols. In the reaction of 4-methoxychalcone with N-acetylcysteine under strongly basic conditions, transformation of the kinetic adduct into the thermodynamically more stable one was observed. Addition of S-protonated N-acetylcysteine onto the polar double bonds of the chalcones showed different degrees of diastereoselectivity. Both chalcones showed a Michael-type addition reaction with the ionized and non-ionized forms of the investigated thiols. The initial reactivity of the chalcones and the equilibrium composition of the incubates showed a positive correlation with the degree of ionization of the thiols. Conversions showed systematic differences under each set of conditions. The observed differences can hint at the difference in reported biological actions of 4-methyl- and 4-methoxy-substituted chalcones.


2021 ◽  
Vol 11 (4) ◽  
pp. 1799
Author(s):  
Claudio Cameselle ◽  
Susana Gouveia ◽  
Adrian Cabo

The electrokinetic remediation of an agricultural soil contaminated with heavy metals was studied using organic acids as facilitating agents. The unenhanced electrokinetic treatment using deionized water as processing fluid did not show any significant mobilization and removal of heavy metals due to the low solubilization of metals and precipitation at high pH conditions close to the cathode. EDTA and citric acid 0.1 M were used as facilitating agents to favor the dissolution and transportation of metals. The organic acids were added to the catholyte and penetrated into the soil specimen by electromigration. EDTA formed negatively charged complexes. Citric acid formed neutral metal complexes in the soil pH conditions (pH = 2–4). Citric acid was much more effective in the dissolution and transportation out of the soil specimen of complexed metals. In order to enhance the removal of metals, the concentration of citric acid was increased up to 0.5 M, resulting in the removal of 78.7% of Cd, 78.6% of Co, 72.5% of Cu, 73.3% of Zn, 11.8% of Cr and 9.8% of Pb.


2021 ◽  
Vol 43 (2) ◽  
pp. 156-160
Author(s):  
Pablo Pérez-Portilla ◽  
Juan Araya ◽  
Karem Gallardo ◽  
Adriana Aránguiz-Acuña

Abstract Cyanobacteria and microalgae are recognized as excellent metal(loid)s-bioremediators of aquatic systems. We isolated a cyanobacterium from the Salado River in the Atacama Desert, northern Chile, which was identified as Cyanobium sp. Growth inhibition bioassays were conducted with arsenic and cadmium, and tolerance of Cyanobium to these metals was estimated. Removal of arsenic was assessed under different pH conditions and over time. We showed that the Cyanobium strain isolated from the Salado River has a greater tolerance to the arsenic and cadmium compounds than other species commonly used in metal(loid)s-bioremediation. Removal of up to 90% of arsenic was obtained in alkaline conditions, within the first 3 hours of exposure suggesting that Cyanobium sp. isolated from the Atacama Desert could be further studied with biotechnological purposes and to understand the evolutionary mechanisms of adaption to arid environments.


2021 ◽  
Vol 122 ◽  
pp. 105127
Author(s):  
P. Madasamy ◽  
M. Mukunthan ◽  
P. Chandramohan ◽  
T.V. Krishna Mohan ◽  
Andrews Sylvanus ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document