scholarly journals Adsorption of p-Arsanilic Acid on Iron (Hydr)oxides and Its Implications for Contamination in Soils

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 105
Author(s):  
Yifan Yang ◽  
Shiyong Tao ◽  
Zhichun Dong ◽  
Jing Xu ◽  
Xiang Zhang ◽  
...  

Because of the diversification of industries in developing cities, the phenomenon of the simultaneous contamination of various kinds of pollutants is becoming common, and the environmental process of pollutants in multi-contaminated environmental mediums has attracted attention in recent years. In this study, p-arsanilic acid (ASA), a kind of organic arsenic feed additive that contains the arsenic group in a chemical structure, is used as a typical contaminant to investigate its adsorption on iron oxides and its implication for contaminated soils. The adsorption kinetics on all solids can be fitted to the pseudo-second-order kinetic model well. At the same mass dosage conditions, the adsorption amount per unit surface area on iron oxides follows the order α-FeOOH > γ-Fe2O3 > α-Fe2O3, which is significantly higher than that for actual soil, because of the lower content of iron oxides in actual soil. Lower pH conditions favor ASA adsorption, while higher pH conditions inhibit its adsorption as a result of the electrostatic repulsion and weakened hydrophobic interaction. The presence of phosphate also inhibits ASA adsorption because of the competitive effect. Correlations between the amount of ASA adsorption in actual soil and the Fe2O3 content, total phosphorus content, arsenic content, and organic matter content of actual soil are also investigated in this work, and a moderate positive correlation (R2 = 0.630), strong negative correlation (R2 = 0.734), insignificant positive correlation (R2 = 0.099), and no correlation (R2 = 0.006) are found, respectively. These findings would help evaluate the potential hazard of the usage of organic arsenic feed additives, as well as further the understanding of the geochemical processes of contaminants in complicated mediums.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohammad Hadi Dehghani ◽  
Mehdi Salari ◽  
Rama Rao Karri ◽  
Farshad Hamidi ◽  
Roghayeh Bahadori

AbstractIn the present study, reactive red 198 (RR198) dye removal from aqueous solutions by adsorption using municipal solid waste (MSW) compost ash was investigated in batch mode. SEM, XRF, XRD, and BET/BJH analyses were used to characterize MSW compost ash. CNHS and organic matter content analyses showed a low percentage of carbon and organic matter to be incorporated in MSW compost ash. The design of adsorption experiments was performed by Box–Behnken design (BBD), and process variables were modeled and optimized using Box–Behnken design-response surface methodology (BBD-RSM) and genetic algorithm-artificial neural network (GA-ANN). BBD-RSM approach disclosed that a quadratic polynomial model fitted well to the experimental data (F-value = 94.596 and R2 = 0.9436), and ANN suggested a three-layer model with test-R2 = 0.9832, the structure of 4-8-1, and learning algorithm type of Levenberg–Marquardt backpropagation. The same optimization results were suggested by BBD-RSM and GA-ANN approaches so that the optimum conditions for RR198 absorption was observed at pH = 3, operating time = 80 min, RR198 = 20 mg L−1 and MSW compost ash dosage = 2 g L−1. The adsorption behavior was appropriately described by Freundlich isotherm, pseudo-second-order kinetic model. Further, the data were found to be better described with the nonlinear when compared to the linear form of these equations. Also, the thermodynamic study revealed the spontaneous and exothermic nature of the adsorption process. In relation to the reuse, a 12.1% reduction in the adsorption efficiency was seen after five successive cycles. The present study showed that MSW compost ash as an economical, reusable, and efficient adsorbent would be desirable for application in the adsorption process to dye wastewater treatment, and both BBD-RSM and GA-ANN approaches are highly potential methods in adsorption modeling and optimization study of the adsorption process. The present work also provides preliminary information, which is helpful for developing the adsorption process on an industrial scale.


2012 ◽  
Vol 246-247 ◽  
pp. 576-580 ◽  
Author(s):  
Bian Hong Zhou ◽  
Cheng Zhong Zhang ◽  
Jian Hua Gao

The four north-central Shaanxi OCPs observed surface concentration of farmland were analyzed via GC-MS and GC/ECD, respectively, Xi’an observation area 6.110 ng•g-1, Tongchuan observation area 0.817 ng•g-1, Yan’an observation area 3.018 ng•g-1, an observation area in Yulin 5.286 ng•g-1, respectively. Be observed over the same period in Xi’an concentration of OCPs in air 325.773 pg•m-3, where the concentration of particles OCPs 160.883 pg•m-3, the concentration of gaseous OCPs 164.890 pg•m-3.Xi’an urban air particles and gas field surface soil OCPs and the OCPs was correspondence between the basic components of content, indicating that much of Xi’an OCPs in the air of dust released from the soil. The results show that the observation area at the same time with different content of each component of different OCPs, DDTs maximum concentration, mainly in the form of p, p’-DDT, BHC, followed by HCHs, mainly in the form of β-HCH; air, gas-eous and OCPs There are two forms of particulate, HCHs gas content was significantly greater than the particulate phase, DDTs substances content of particles greater than the gas content; OCPs in soil content and the physical nature of the soil, HCB, Chlordane, TN+CN and soil organic matter Content showed a significant positive correlation, chlordane, endosulfan, EnSO4 and soil acidity was a significant positive correlation, HCHs, DDTs and soil acidity were some negative.


2018 ◽  
Vol 19 (9) ◽  
pp. 2816 ◽  
Author(s):  
Rebeca Peñalva ◽  
Jorge Morales ◽  
Carlos González-Navarro ◽  
Eneko Larrañeta ◽  
Gemma Quincoces ◽  
...  

Resveratrol is a naturally occurring polyphenol that provides several health benefits including cardioprotection and cancer prevention. However, its biological activity is limited by a poor bioavailability when taken orally. The aim of this work was to evaluate the capability of casein nanoparticles as oral carriers for resveratrol. Nanoparticles were prepared by a coacervation process, purified and dried by spray-drying. The mean size of nanoparticles was around 200 nm with a resveratrol payload close to 30 μg/mg nanoparticle. In vitro studies demonstrated that the resveratrol release from casein nanoparticles was not affected by the pH conditions and followed a zero-order kinetic. When nanoparticles were administered orally to rats, they remained within the gut, displaying an important capability to reach the intestinal epithelium. No evidence of nanoparticle “translocation” were observed. The resveratrol plasma levels were high and sustained for at least 8 h with a similar profile to that observed for the presence of the major metabolite in plasma. The oral bioavailability of resveratrol when loaded in casein nanoparticles was calculated to be 26.5%, 10 times higher than when the polyphenol was administered as oral solution. Finally, a good correlation between in vitro and in vivo data was observed.


2017 ◽  
Vol 253 ◽  
pp. 329-335 ◽  
Author(s):  
Michaela Tokarčíková ◽  
Jonáš Tokarský ◽  
Kateřina Mamulová Kutláková ◽  
Jana Seidlerová

2017 ◽  
Vol 5 (2) ◽  
pp. 61 ◽  
Author(s):  
Vishalakshi Badalamoole ◽  
Sirajo Abubakar Zauro

A terpolymer gel compositeis made up of locust bean gum (LBG), diallyldimethylammonium chloride (DADMAC), 2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS) and bentonite (BNT) was prepared using methylenebisacrylamide (MBA) as crosslinker via microwave irradiation and characterized using FTIR, TGA and SEM techniques. Swelling behavior of the composite was studied under different pH conditions. The composite was also evaluated for adsorption of anionic dye ‘Indigo Carmine’ (IC). The behaviour of the composite was compared with the terpolymer gel without the clay component. The gel showed remarkably higher swelling under neutral pH compared to the composite. The adsorption capacity of the terpolymer gel without clay for Indigo Carmine dyeis also found to be higher (17.36 mg/g) compared to the clay composite (11.99 mg/g). The adsorption data were subjected to three different isotherm models namely; Freundlich, Langmuir and Temkin and were observed to be explained best by Freundlich model. The adsorption of indigo Carmine on the terpolymer gel and the composite is observed to be a second order kinetic process.


Weed Science ◽  
1969 ◽  
Vol 17 (1) ◽  
pp. 27-31 ◽  
Author(s):  
C. I. Harris ◽  
E. A. Woolson ◽  
B. E. Hummer

Twelve locations in the United States and Puerto Rico were the sites for determining the loss of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) and 2,3,6-trichlorophenylacetic acid (fenac) from soil. The herbicides were contained in tubes (1.88 by 6 inches) placed at depths of 3, 9, and 15 inches in the field. The samples were placed horizontally to minimize losses due to vertical movement of water from the tubes. After at least 3 months in the soil, the samples were returned to Beltsville and analyzed. Average recoveries showed 61% more atrazine and 41% more fenac from the 15-inch depth than from the 3-inch depth. Five northern samples contained more than twice as much atrazine and fenac residue as four southern samples. A positive correlation existed between fenac retention and soil organic matter content. Increasing soil organic matter and depth of placement, and decreasing temperature, tended to make the herbicides more persistent. However, the data were quite variable and the variations were often unexplainable.


Weed Science ◽  
1988 ◽  
Vol 36 (4) ◽  
pp. 530-534 ◽  
Author(s):  
Ole K. Borggaard ◽  
Jens C. Streibig

An investigation of the adsorption of chlorsulfuron by four selected soil constituents, i.e. humic acid, two iron oxides, and montmorillonite, was carried out under concentration and pH conditions similar to those in most natural soils. CaCl2(0.01 M) was used as background electrolyte to suppress nonspecific adsorption. Negligible amounts of chlorsulfuron were adsorbed by montmorillonite, whereas humic acid and the iron oxides were found to be important adsorbents. For these adsorbents, chlorsulfuron adsorption decreased when pH increased from 4 to 8, with little adsorption occurring at pH 8. Adsorption by iron oxides was a function of their surface area. Chlorsulfuron adsorption was found to be closely related to the surface charge of the adsorbents, but in weakly acidic solution, also to the acid-base properties of chlorsulfuron itself.


2012 ◽  
Vol 239-240 ◽  
pp. 1045-1051
Author(s):  
Jian Cui ◽  
Yan Wang ◽  
Xue Hong Zhao ◽  
Li Dai

The purpose of detecting trace concentrations of analytes often is hindered by occurring noise in the signal curves of analytical methods. This is also a problem when different arsenic species (organic arsenic species such as arsanilic acid, nitarsone and roxarsone) are to be determined in animal meat by HPLC-UV-HG-AFS, which is the basis of this work. In order to improve the detection power, methods of signal treatment may be applied. We show a comparison of convolution with Gaussian distribution curves, Fourier transform, and wavelet transform. It is illustrated how to estimate decisive parameters for these techniques. All methods result in improved limits of detection. Furthermore, applying baselines and evaluating peaks thoroughly is facilitated. However, there are differences. Fourier transform may be applied, but convolution with Gaussian distribution curves shows better results of improvement. The best of the three is wavelet transform, whereby the detection power is improved by factors of about 2.4.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3052
Author(s):  
Jing Ji ◽  
Wenwen Huang ◽  
Lingchong Wang ◽  
Lu Chen ◽  
Yuanqing Wei ◽  
...  

For the removal of arsenic from marine products, iowaite was prepared and investigated to determine the optimal adsorption process of arsenic. Different chemical forms of arsenic (As(III), As(V)) with varying concentrations (0.15, 1.5, 5, 10, 15, and 20 mg/L) under various conditions including pH (3, 5, 7, 9, 11) and contact time (1, 2, 5, 10, 15, 30, 60, 120, 180 min) were exposed to iowaite. Adsorption isotherms and metal ions kinetic modeling onto the adsorbent were determined based on Langmuir, Freundlich, first- and second-order kinetic models. The adsorption onto iowaite varied depending on the conditions. The adsorption rates of standard solution, As(III) and As(V) exceeded 95% under proper conditions, while high complexity was noted with marine samples. As(III) and As(V) from Mactra veneriformis extraction all decreased when exposed to iowaite. The inclusion morphology and interconversion of organic arsenic limit adsorption. Iowaite can be efficiently used for inorganic arsenic removal from wastewater and different marine food products, which maybe other adsorbent or further performance of iowaite needs to be investigated for organic arsenic.


Sign in / Sign up

Export Citation Format

Share Document