scholarly journals Targeted myostatin loss-of-function mutation increases type II muscle fibers in Meishan pigs

2022 ◽  
Vol 21 (1) ◽  
pp. 188-198
Author(s):  
Li-li QIAN ◽  
Jing-yi XIE ◽  
Ting GAO ◽  
Chun-bo CAI ◽  
Sheng-wang JIANG ◽  
...  
2021 ◽  
Vol 22 (12) ◽  
pp. 6497
Author(s):  
Anna Ghilardi ◽  
Alberto Diana ◽  
Renato Bacchetta ◽  
Nadia Santo ◽  
Miriam Ascagni ◽  
...  

The last decade has witnessed the identification of several families affected by hereditary non-syndromic hearing loss (NSHL) caused by mutations in the SMPX gene and the loss of function has been suggested as the underlying mechanism. In the attempt to confirm this hypothesis we generated an Smpx-deficient zebrafish model, pointing out its crucial role in proper inner ear development. Indeed, a marked decrease in the number of kinocilia together with structural alterations of the stereocilia and the kinocilium itself in the hair cells of the inner ear were observed. We also report the impairment of the mechanotransduction by the hair cells, making SMPX a potential key player in the construction of the machinery necessary for sound detection. This wealth of evidence provides the first possible explanation for hearing loss in SMPX-mutated patients. Additionally, we observed a clear muscular phenotype consisting of the defective organization and functioning of muscle fibers, strongly suggesting a potential role for the protein in the development of muscle fibers. This piece of evidence highlights the need for more in-depth analyses in search for possible correlations between SMPX mutations and muscular disorders in humans, thus potentially turning this non-syndromic hearing loss-associated gene into the genetic cause of dysfunctions characterized by more than one symptom, making SMPX a novel syndromic gene.


2021 ◽  
Vol 81 ◽  
pp. 109939
Author(s):  
Marcos Mônico-Neto ◽  
Kil Sun Lee ◽  
Márcio Henrique Mello da Luz ◽  
Jessica Monteiro Volejnik Pino ◽  
Daniel Araki Ribeiro ◽  
...  

2007 ◽  
Vol 15 (3) ◽  
pp. 336-348 ◽  
Author(s):  
Florian Brunner ◽  
Annina Schmid ◽  
Ali Sheikhzadeh ◽  
Margareta Nordin ◽  
Jangwhon Yoon ◽  
...  

The authors conducted a systematic review of the literature for scientific articles in selected databases to determine the effects of aging on Type II muscle fibers in human skeletal muscles. They found that aging of Type II muscle fibers is primarily associated with a loss of fibers and a decrease in fiber size. Morphological changes with increasing age particularly included Type II fiber grouping. There is conflicting evidence regarding the change of proportion of Type II fibers. Type II muscle fibers seem to play an important role in the aging process of human skeletal muscles. According to this literature review, loss of fibers, decrease in size, and fiber-type grouping represent major quantitative changes. Because the process of aging involves various complex phenomena such as fiber-type coexpression, however, it seems difficult to assign those changes solely to a specific fiber type.


1999 ◽  
Vol 87 (4) ◽  
pp. 1326-1332 ◽  
Author(s):  
Mona Esbjörnsson-Liljedahl ◽  
Carl Johan Sundberg ◽  
Barbara Norman ◽  
Eva Jansson

The acute metabolic response to sprint exercise was studied in 20 male and 19 female students. We hypothesized that the reduction of muscle glycogen content during sprint exercise would be smaller in women than in men and that a possible gender difference in glycogen reduction would be higher in type II than in type I fibers. The exercise-induced increase in blood lactate concentration was 22% smaller in women than in men. A considerable reduction of ATP (50%), phosphocreatine (83%), and glycogen (35%) was found in type II muscle fibers, and it did not differ between the genders. A smaller reduction of ATP (17%) and phosphocreatine (78%) was found in type I fibers, and it did not differ between the genders. However, the exercise-induced reduction in glycogen content in type I fibers was 50% smaller in women than in men. The hypothesis was indeed partly confirmed: the exercise-induced glycogen reduction was attenuated in women compared with men, but the gender difference was in type I rather than in type II fibers. Fiber-type-specific and gender-related differences in the metabolic response to sprint exercise might have implications for the design of training programs for men and women.


2020 ◽  
pp. 107-107
Author(s):  
Vladimir Antic ◽  
Nenad Stojiljkovic ◽  
Milorad Antic

Background/Aim. In this paper, we analyzed type I and type II muscle fibers of the iliopsoas muscle in persons of both genders with ageing. The aim of this study was to detect the presence and distribution of types I and II muscle fibers in the human psoas muscle using the hematoxylin and eosin method in individuals of different ages and genders. Methods. The material consisted of tissue samples of the right iliopsoas muscle taken from 30 adult cadavers (18 males and 12 females), aged from 30 to 90 years, divided into three age groups. The material was obtained from the Institute of Forensic Medicine, Faculty of Medicine University of Nis. Results. The values of astereological parameters (area, perimeter and Feret's diameter) of type I and type II muscle fibers were higher in male cases, although without any statistical significance. Conclusion. Based on the histochemical and morphometric analysis, the conclusion was drawn that after 70 years of life there occurred a loss of type II muscle fibers, more conspicuous in female cases.


Biomedicines ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 420
Author(s):  
Laura C. Gunder ◽  
Innocence Harvey ◽  
JeAnna R. Redd ◽  
Carol S. Davis ◽  
Ayat AL-Tamimi ◽  
...  

Glucocorticoids promote muscle atrophy by inducing a class of proteins called atrogenes, resulting in reductions in muscle size and strength. In this work, we evaluated whether a mouse model with pre-existing diet-induced obesity had altered glucocorticoid responsiveness. We observed that all animals treated with the synthetic glucocorticoid dexamethasone had reduced strength, but that obesity exacerbated this effect. These changes were concordant with more pronounced reductions in muscle size, particularly in Type II muscle fibers, and potentiated induction of atrogene expression in the obese mice relative to lean mice. Furthermore, we show that the reductions in lean mass do not fully account for the dexamethasone-induced insulin resistance observed in these mice. Together, these data suggest that obesity potentiates glucocorticoid-induced muscle atrophy.


1991 ◽  
Vol 71 (2) ◽  
pp. 458-464 ◽  
Author(s):  
G. C. Sieck ◽  
M. Fournier ◽  
C. E. Blanco

postnatal development. Both twitch contraction time and half-relaxation time decreased progressively with age. Correspondingly, the force-frequency curve was shifted to the left early in development compared with adults. The ratio of peak twitch force to maximum tetanic force decreased with age. Fatigue resistance of the diaphragm was highest at birth and then progressively decreased with age. At birth, most diaphragm muscle fibers stained darkly for myofibrillar adenosinetriphosphatase after alkaline preincubation and thus would be classified histochemically as type II. During subsequent postnatal development, the proportion of type I fibers (lightly stained for adenosinetriphosphatase) increased while the number of type II fibers declined. At birth, type I fibers were larger than type II fibers. The size of both fiber types increased with age, but the increase in cross-sectional area was greater for type II fibers. On the basis of fiber type proportions and mean cross-sectional areas, type I fibers contributed 15% of total muscle mass at birth and 25% in adults. Thus postnatal changes in diaphragm contractile and fatigue properties cannot be attributed to changes in the relative contribution of histochemically classified type I and II fibers. However, the possibility that these developmental changes in diaphragm contractile and fatigue properties correlated with the varying contractile protein composition of muscle fibers was discussed.


2019 ◽  
Vol 102 (3) ◽  
pp. 639-646 ◽  
Author(s):  
Luisina Ongaro ◽  
Xiang Zhou ◽  
Yiming Cui ◽  
Ulrich Boehm ◽  
Daniel J Bernard

Abstract Activins selectively stimulate follicle-stimulating hormone (FSH) secretion by pituitary gonadotrope cells. More recently, other members of the TGFbeta superfamily, the bone morphogenetic proteins (BMPs), were reported to regulate FSH synthesis. Activins and BMPs independently and synergistically stimulate transcription of the FSHbeta subunit (Fshb) gene in immortalized gonadotrope-like cells. Both ligands can signal via the activin receptor type IIA (ACVR2A) to regulate FSH synthesis in vitro. In vivo, global Acvr2a knockout mice exhibit a 60% reduction in circulating FSH relative to wild-type animals, suggesting that activins, BMPs, or related ligands might signal through additional type II receptors to regulate FSH in vivo. Although the leading candidates are ACVR2B and the BMP type II receptor (BMPR2), only the latter mediates activin or BMP2 induction of Fshb transcription in vitro. Here, we generated mice carrying a loss of function mutation in Bmpr2 specifically in gonadotropes. Puberty onset, estrous cyclicity, and reproductive organ weights were similar between control and conditional knockout females. Serum FSH and luteinizing hormone (LH) and pituitary expression of Fshb and the LHbeta subunit (Lhb) were similarly unaffected by the gene deletion in both sexes. These results suggest that BMPR2 might not play a necessary role in FSH synthesis or secretion in vivo or that another type II receptor, such as ACVR2A, can fully compensate for its absence. These data also further contribute to the emerging concept that BMPs may not be physiological regulators of FSH in vivo.


2007 ◽  
Vol 293 (1) ◽  
pp. C313-C320 ◽  
Author(s):  
R. H. Fitts ◽  
J. G. Romatowski ◽  
J. R. Peters ◽  
D. Paddon-Jones ◽  
R. R. Wolfe ◽  
...  

Prolonged inactivity associated with bed rest in a clinical setting or spaceflight is frequently associated with hypercortisolemia and inadequate caloric intake. Here, we determined the effect of 28 days of bed rest (BR); bed rest plus hypercortisolemia (BRHC); and bed rest plus essential amino acid (AA) and carbohydrate (CHO) supplement (BRAA) on the size and function of single slow- and fast-twitch muscle fibers. Supplementing meals, the BRAA group consumed 16.5 g essential amino acids and 30 g sucrose at 1100, 1600, and 2100 h, and the BRHC subjects received 5 daily doses of 10–15 mg of oral hydrocortisone sodium succinate throughout bed rest. Bed rest induced atrophy and loss of force (mN) and power (μN·FL·s−1) in single fibers was exacerbated by hypercortisolemia where soleus peak force declined by 23% in the type I fiber from a prevalue of 0.78 ± 0.02 to 0.60 ± 0.02 mN post bed rest (compared to a 7% decline with bed rest alone) and 27% in the type II fiber (1.10 ± 0.08 vs. 0.81 ± 0.05 mN). In the BRHC group, peak power dropped by 19, 15, and 11% in the soleus type I, and vastus lateralis (VL) type I and II fibers, respectively. The AA/CHO supplement protected against the bed rest-induced loss of peak force in the type I soleus and peak power in the VL type II fibers. These results provide evidence that an AA/CHO supplement might serve as a successful countermeasure to help preserve muscle function during periods of relative inactivity.


1991 ◽  
Vol 260 (5) ◽  
pp. E713-E718 ◽  
Author(s):  
P. L. Greenhaff ◽  
J. M. Ren ◽  
K. Soderlund ◽  
E. Hultman

The concentrations of glycogen, ATP, and phosphocreatine were analyzed in types I and II muscle fibers separated from biopsy samples of the quadriceps femoris muscle in five healthy volunteers. Muscle samples were obtained before and after 64 s of intermittent electrical stimulation. The experiment was carried out without and with epinephrine (Epi) infusion. Before stimulation the glycogen concentration was 11% higher in type II than in type I fibers (P less than 0.05). During electrical stimulation, rapid glycogenolysis occurred in type II fibers with hardly any detectable glycogenolysis in type I fibers. The calculated rates of glycogenolysis were 0.18 +/- 0.14 and 3.54 +/- 0.53 mmol glucose.kg dry muscle-1.s-1 in types I and II fibers, respectively. Epi infusion increased the rate of glycogenolysis during electrical stimulation in type I fibers (10-fold) but did not enhance the rate in type II fibers (P greater than 0.05). It is considered that, during short-term maximal muscle contraction, rapid muscle glycogenolysis occurs predominantly in type II fibers even though types I and II fibers are recruited and that, when Epi stimulation of glycogenolysis occurs, this is predominantly limited to type I fibers.


Sign in / Sign up

Export Citation Format

Share Document