A semi-analytical approach for flutter analysis of a high-aspect-ratio wing

2020 ◽  
Vol 125 (1284) ◽  
pp. 410-429 ◽  
Author(s):  
R.F. Latif ◽  
M.K.A. Khan ◽  
A. Javed ◽  
S.I.A. Shah ◽  
S.T.I. Rizvi

AbstractWe present a hybrid, semi-analytical approach to perform an eigenvalue-based flutter analysis of an Unmanned Aerial Vehicle (UAV) wing. The wing has a modern design that integrates metal and composite structures. The stiffness and natural frequency of the wing are calculated using a Finite Element (FE) model. The modal parameters are extracted by applying a recursive technique to the Lanczos method in the FE model. Subsequently, the modal parameters are used to evaluate the flutter boundaries in an analytical model based on the p-method. Two-degree-of-freedom bending and torsional flutter equations derived using Lagrange’s principle are transformed into an eigenvalue problem. The eigenvalue framework is used to evaluate the stability characteristics of the wing under various flight conditions. An extension of this eigenvalue framework is applied to determine the stability boundaries and corresponding critical flutter parameters at a range of altitudes. The stability characteristics and critical flutter speeds are also evaluated through computational analysis of a reduced-order model of the wing in NX Nastran using the k- and pk-methods. The results of the analytical and computational methods are found to show good agreement with each other. A parametric study is also carried out to analyse the effects of the structural member thickness on the wing flutter speeds. The results suggest that changing the spar thickness contributes most significantly to the flutter speeds, whereas increasing the rib thickness decreases the flutter speed at high thickness values.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1281
Author(s):  
Tanja Pušić ◽  
Bosiljka Šaravanja ◽  
Krešimir Malarić

This paper investigates a textile material of low surface mass for its protection against electromagnetic radiation (EMR), which is suitable for composite structures of garments, and for technical and interior applications. The shielding effectiveness against EMR of fabric knitted from polyamide threads coated with silver, measured in the frequency range of 0.9 GHz to 2.4 GHz, indicated a high degree of protection. The key contribution of the paper is the evaluation of the stability of the shielding properties against EM radiation after applying apolar and polar solvents, in synergy with the cyclic process parameters of wet and dry cleaning. The results of the study confirmed the decline in the shielding effectiveness after successive cycles of material treatment with dry and wet cleaning. The effect of wet cleaning in relation to dry cleaning is more apparent, which is due to the damage of the silver coating on the polyamide threads in the knitted fabric.


2006 ◽  
Vol 17 (01) ◽  
pp. 65-73 ◽  
Author(s):  
SHIRO SAWADA

The optimal velocity model which depends not only on the headway but also on the relative velocity is analyzed in detail. We investigate the effect of considering the relative velocity based on the linear and nonlinear analysis of the model. The linear stability analysis shows that the improvement in the stability of the traffic flow is obtained by taking into account the relative velocity. From the nonlinear analysis, the relative velocity dependence of the propagating kink solution for traffic jam is obtained. The relation between the headway and the velocity and the fundamental diagram are examined by numerical simulation. We find that the results by the linear and nonlinear analysis of the model are in good agreement with the numerical results.


1961 ◽  
Vol 28 (1) ◽  
pp. 71-77 ◽  
Author(s):  
C. P. Atkinson

This paper presents a method for analyzing a pair of coupled nonlinear differential equations of the Duffing type in order to determine whether linearly related modal oscillations of the system are possible. The system has two masses, a coupling spring and two anchor springs. For the systems studied, the anchor springs are symmetric but the masses are not. The method requires the solution of a polynomial of fourth degree which reduces to a quadratic because of the symmetric springs. The roots are a function of the spring constants. When a particular set of spring constants is chosen, roots can be found which are then used to set the necessary mass ratio for linear modal oscillations. Limits on the ranges of spring-constant ratios for real roots and positive-mass ratios are given. A general stability analysis is presented with expressions for the stability in terms of the spring constants and masses. Two specific examples are given.


2011 ◽  
Vol 137 ◽  
pp. 72-76
Author(s):  
Wei Zhang ◽  
Xian Wen ◽  
Yan Qun Jiang

A proper orthogonal decomposition (POD) method is applied to study the global stability analysis for flow past a stationary circular cylinder. The flow database at Re=100 is obtained by CFD software, i.e. FLUENT, with which POD bases are constructed by a snapshot method. Based on the POD bases, a low-dimensional model is established for solving the two-dimensional incompressible NS equations. The stability of the flow solution is evaluated by a POD-Chiba method in the way of the eigensystem analysis for the velocity disturbance. The linear stability analysis shows that the first Hopf bifurcation takes place at Re=46.9, which is in good agreement with available results by other high-order accurate stability analysis methods. However, the calculated amount of POD is little, which shows the availability and advantage of the POD method.


2014 ◽  
Vol 622-623 ◽  
pp. 659-663 ◽  
Author(s):  
Fabio Bassan ◽  
Paolo Ferro ◽  
Franco Bonollo

In this work, the formation mechanisms of surface defects in multistage cold forging of axisymmetrical parts have been studied through FEM simulations. As case history, the industrial production of an heating pipe fitting by cold forging has been analyzed. Based on simulated flow behaviour of material, several types of surface defects are identified and attributed to plastic instability of the work-material, inappropriate axial/radial flow ratio, excessive forming-pressure and uncorrect tooling design. The results of the FE model are finally compared with those obtained from real forging process and good agreement is observed.


2016 ◽  
Vol 28 (14) ◽  
pp. 1886-1904 ◽  
Author(s):  
Vijaya VN Sriram Malladi ◽  
Mohammad I Albakri ◽  
Serkan Gugercin ◽  
Pablo A Tarazaga

A finite element (FE) model simulates an unconstrained aluminum thin plate to which four macro-fiber composites are bonded. This plate model is experimentally validated for single and multiple inputs. While a single input excitation results in the frequency response functions and operational deflection shapes, two input excitations under prescribed conditions result in tailored traveling waves. The emphasis of this article is the application of projection-based model reduction techniques to scale-down the large-scale FE plate model. Four model reduction techniques are applied and their performances are studied. This article also discusses the stability issues associated with the rigid-body modes. Furthermore, the reduced-order models are utilized to simulate the steady-state frequency and time response of the plate. The results are in agreement with the experimental and the full-scale FE model results.


1980 ◽  
Vol 47 (3) ◽  
pp. 645-651 ◽  
Author(s):  
L. A. Month ◽  
R. H. Rand

The stability of periodic motions (nonlinear normal modes) in a nonlinear two-degree-of-freedom Hamiltonian system is studied by deriving an approximation for the Poincare´ map via the Birkhoff-Gustavson canonical transofrmation. This method is presented as an alternative to the usual linearized stability analysis based on Floquet theory. An example is given for which the Floquet theory approach fails to predict stability but for which the Poincare´ map approach succeeds.


2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


2013 ◽  
Vol 281 ◽  
pp. 112-115 ◽  
Author(s):  
Dan Jin ◽  
Zhao Hui Li

Wedge-shaped transducers have been widely used in industry as probes for ultrasonic flowmeters or for ultrasonic flaw detectors. But by now, few studies have focused on the influence to the performance of the wedge-shaped transducers brought by their limited size. In this paper, the effect of the shape and size of wedge-shaped substrates on the whole transducer system is discussed and the shape and size of a transducer (0.5MHz) is optimized to eliminate the influence of the boundary effect by using a 2-D Finite Element (FE) model. Lastly, wedge-shaped transducers have been manufactured for experiment which shows a good agreement with the simulation.


Sign in / Sign up

Export Citation Format

Share Document