scholarly journals 4146 Establishment of Screening Methods for G6DP Deficiency – Translational and Clinical Applications

2020 ◽  
Vol 4 (s1) ◽  
pp. 108-108
Author(s):  
Christian Gomez ◽  
Ingrid C. Espinoza ◽  
Kerri A. Harrison ◽  
Fremel J. Backus ◽  
Krishna K. Ayyalasomayajula ◽  
...  

OBJECTIVES/GOALS: To develop feasible screening methods for activity of the enzyme Glucose-6-phosphate dehydrogenase (G6PD) with point of care applicability. METHODS/STUDY POPULATION: Current knowledge establishes the relevance of G6PD as a critical therapeutic determinant for effective antimalarial therapy due to the occurrence of mutations that lead to post-treatment severe adverse effects. We present our findings on development of cost effective point-of-care screening methodologies to ascertain G6PD deficiency. RESULTS/ANTICIPATED RESULTS: Using Patient Cohort Explorer and data from the Department of Pathology, we established the prevalence of G6PD deficiency at the University of Mississippi Medical Center, Jackson, MS as high as 11.8% (African-American males in all population, n = 2518). Next, for selection of potential target groups, we set up a protocol for recruitment of volunteers based on ethnic background, parental ethnicity, and medical history. G6PD activity was evaluated using point of care methods [Trinity Biotech test or CareSTART Biosensor], and Gold Standard quantitative spectrophotometric assay (LabCorp). Determinations in >20 subjects have showed comparable concordance. If used with a conservative interpretation of the signal, the Trinity Biotech test showed superior potential for use in the field relative to the CareSTART Biosensor. DISCUSSION/SIGNIFICANCE OF IMPACT: We established the prevalence of G6PD deficiency in our medical center. We have also setup tests for point-of-care assessment of G6PD. Pending evaluation of the relative tests performance, we will be in position to screen individuals and select them for a prospective clinical trial to evaluate the safety of antimalarial agents on scope of G6PD deficiency.

2005 ◽  
Vol 12 (4) ◽  
pp. 170-171 ◽  
Author(s):  
Mohammed Ahmed Muzaffer

Objective: To determine the prevalence of glucose-6-phosphate dehydrogenase (G6PD) deficiency in the population tested, and to evaluate the prevalence of neonatal jaundice in newborns with G6PD deficiency. Methods: Cord blood of all babies born between October 1996 and October 1998 at the Royal Commission Medical Center in Yanbu, Saudi Arabia, was screened for G6PD deficiency by fluorescent spot test. The results of screening of cord blood samples were reported to the physician in charge, and also placed on the files of the babies and their mothers. These babies were observed for 72 h and discharged if no jaundice developed. Results: During this two-year period, 2505 neonatal cord blood samples from 1278 boys and 1227 girls were screened for G6PD. There were 50 positive results for G6PD deficiency (39 boys and 11 girls), and the prevalence was estimated to be around 2%. The sex-specific prevalence for boys was 3.05%, and for girls 0.9%. Male to female ratio was 3:1. Neonatal jaundice developed in six (12%) babies, five male and one female. All were treated with phototherapy and discharged within one week of birth. Conclusion: The prevalence of G6PD is relatively high in Yanbu. Routine neonatal screening in areas with a high prevalence of G6PD in Saudi Arabia is justifiable.


2021 ◽  
Vol 12 ◽  
Author(s):  
Germana Bancone ◽  
Cindy S. Chu

Restrictions on the cultivation and ingestion of fava beans were first reported as early as the fifth century BC. Not until the late 19th century were clinical descriptions of fava-induced disease reported and soon after characterised as “favism” in the early 20th century. It is now well known that favism as well as drug-induced haemolysis is caused by a deficiency of the glucose-6-phosphate dehydrogenase (G6PD) enzyme, one of the most common enzyme deficiency in humans. Interest about the interaction between G6PD deficiency and therapeutics has increased recently because mass treatment with oxidative 8-aminoquinolines is necessary for malaria elimination. Historically, assessments of haemolytic risk have focused on the clinical outcomes (e.g., haemolysis) associated with either a simplified phenotypic G6PD characterisation (deficient or normal) or an ill-fitting classification of G6PD genetic variants. It is increasingly apparent that detailed knowledge of both aspects is required for a complete understanding of haemolytic risk. While more attention has been devoted recently to better phenotypic characterisation of G6PD activity (including the development of new point-of care tests), the classification of G6PD variants should be revised to be clinically useful in malaria eliminating countries and in populations with prevalent G6PD deficiency. The scope of this work is to summarize available literature on drug-induced haemolysis among individuals with different G6PD variants and to highlight knowledge gaps that could be filled with further clinical and laboratory research.


Blood ◽  
2020 ◽  
Vol 136 (11) ◽  
pp. 1225-1240 ◽  
Author(s):  
Lucio Luzzatto ◽  
Mwashungi Ally ◽  
Rosario Notaro

Abstract Glucose 6-phosphate dehydrogenase (G6PD) deficiency is 1 of the commonest human enzymopathies, caused by inherited mutations of the X-linked gene G6PD. G6PD deficiency makes red cells highly vulnerable to oxidative damage, and therefore susceptible to hemolysis. Over 200 G6PD mutations are known: approximately one-half are polymorphic and therefore common in various populations. Some 500 million persons with any of these mutations are mostly asymptomatic throughout their lifetime; however, any of them may develop acute and sometimes very severe hemolytic anemia when triggered by ingestion of fava beans, by any of a number of drugs (for example, primaquine, rasburicase), or, more rarely, by infection. Approximately one-half of the G6PD mutations are instead sporadic: rare patients with these mutations present with chronic nonspherocytic hemolytic anemia. Almost all G6PD mutations are missense mutations, causing amino acid replacements that entail deficiency of G6PD enzyme activity: they compromise the stability of the protein, the catalytic activity is decreased, or a combination of both mechanisms occurs. Thus, genotype-phenotype correlations have been reasonably well clarified in many cases. G6PD deficiency correlates remarkably, in its geographic distribution, with past/present malaria endemicity: indeed, it is a unique example of an X-linked human polymorphism balanced through protection of heterozygotes from malaria mortality. Acute hemolytic anemia can be managed effectively provided it is promptly diagnosed. Reliable diagnostic procedures are available, with point-of-care tests becoming increasingly important where primaquine and its recently introduced analog tafenoquine are required for the elimination of malaria.


2016 ◽  
Vol 62 (7) ◽  
pp. 947-958 ◽  
Author(s):  
Rana K Daher ◽  
Gale Stewart ◽  
Maurice Boissinot ◽  
Michel G Bergeron

Abstract BACKGROUND First introduced in 2006, recombinase polymerase amplification (RPA) has stirred great interest, as evidenced by 75 publications as of October 2015, with 56 of them just in the last 2 years. The widespread adoption of this isothermal molecular tool in many diagnostic fields represents an affordable (approximately 4.3 USD per test), simple (few and easy hands-on steps), fast (results within 5–20 min), and sensitive (single target copy number detected) method for the identification of pathogens and the detection of single nucleotide polymorphisms in human cancers and genetically modified organisms. CONTENT This review summarizes the current knowledge on RPA. The molecular diagnostics of various RNA/DNA pathogens is discussed while highlighting recent applications in clinical settings with focus on point-of-care (POC) bioassays and on automated fluidic platforms. The strengths and limitations of this isothermal method are also addressed. SUMMARY RPA is becoming a molecular tool of choice for the rapid, specific, and cost-effective identification of pathogens. Owing to minimal sample-preparation requirements, low operation temperature (25–42 °C), and commercial availability of freeze-dried reagents, this method has been applied outside laboratory settings, in remote areas, and interestingly, onboard automated sample-to-answer microfluidic devices. RPA is undoubtedly a promising isothermal molecular technique for clinical microbiology laboratories and emergence response in clinical settings.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Oum Kelthoum Mamadou Djigo ◽  
Yacoub Ould Khalef ◽  
Mohamed Salem Ould Ahmedou Salem ◽  
Nicolas Gomez ◽  
Leonardo Basco ◽  
...  

Abstract Background The elimination of Plasmodium vivax malaria requires 8-aminoquinolines, which are contraindicated in patients with glucose-6-phosphate dehydrogenase (G6PD) deficiency due to the risk of acute haemolytic anaemia. Several point-of-care devices have been developed to detect G6PD deficiency. The objective of the present study was to evaluate the performance of two of these devices against G6PD genotypes in Mauritania. Methods Outpatients were screened for G6PD deficiency using CareStart™ rapid diagnostic test (RDT) and CareStart™ G6PD biosensor in Nouakchott, Mauritania, in 2019–2020. African-type and Mediterranean-type G6PD genotypes commonly observed in Africa were determined by polymerase chain reaction-restriction fragment length polymorphism and sequencing. Qualitative variables were compared using Fisher’s exact test. Results Of 323 patients (74 males and 249 females), 5 males and 2 homozygous females had the African-type A- genotype: A−(202) in 3 males and 2 females and G6PD A−(968) in 2 males. Among heterozygous females, 13 carried G6PD A−(202), 12 G6PD A−(968), and 3 G6PD A−(542) variants. None had the Mediterranean-type G6PD genotype. Eight had a positive G6PD RDT result, including all 7 hemizygous males and homozygous females with A- or A-A- (0.12 to 2.34 IU/g haemoglobin, according to G6PD biosensor), but RDT performed poorly (sensitivity, 11.1% at the cut-off level of < 30%) and yielded many false negative tests. Thirty-seven (50.0%) males and 141 (56.6%) females were anaemic. The adjusted median values of G6PD activity were 5.72 and 5.34 IU/g haemoglobin in non-anaemic males (n = 35) and non-anaemic males and females (n = 130) with normal G6PD genotypes using G6PD biosensor, respectively. Based on the adjusted median of 5.34 IU/g haemoglobin, the performance of G6PD biosensor against genotyping was as follows: at 30% cut-off, the sensitivity and specificity were 85.7% and 91.7%, respectively, and at 80% cut-off, the sensitivity was 100% while the specificity was 64.9%. Conclusions Although this pilot study supports the utility of biosensor to screen for G6PD deficiency in patients, further investigation in parallel with spectrophotometry is required to promote and validate a more extensive use of this point-of-care device in areas where P. vivax is highly prevalent in Mauritania. Graphic abstract


2021 ◽  
Vol 15 (8) ◽  
pp. e0009649
Author(s):  
Stephanie Zobrist ◽  
Marcelo Brito ◽  
Eduardo Garbin ◽  
Wuelton M. Monteiro ◽  
Suellen Clementino Freitas ◽  
...  

Background Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common enzyme deficiency, prevalent in many malaria-endemic countries. G6PD-deficient individuals are susceptible to hemolysis during oxidative stress, which can occur from exposure to certain medications, including 8-aminoquinolines used to treat Plasmodium vivax malaria. Accordingly, access to point-of-care (POC) G6PD testing in Brazil is critical for safe treatment of P. vivax malaria. Methodology/Principal findings This study evaluated the performance of the semi-quantitative, POC STANDARD G6PD Test (SD Biosensor, Republic of Korea). Participants were recruited at clinics and through an enriched sample in Manaus and Porto Velho, Brazil. G6PD and hemoglobin measurements were obtained from capillary samples at the POC using the STANDARD and HemoCue 201+ (HemoCue AB, Sweden) tests. A thick blood slide was prepared for malaria microscopy. At the laboratories, the STANDARD and HemoCue tests were repeated on venous samples and a quantitative spectrophotometric G6PD reference assay was performed (Pointe Scientific, Canton, MI). G6PD was also assessed by fluorescent spot test. In Manaus, a complete blood count was performed. Samples were analyzed from 1,736 participants. In comparison to spectrophotometry, the STANDARD G6PD Test performed equivalently in determining G6PD status in venous and capillary specimens under varied operating temperatures. Using the manufacturer-recommended reference value thresholds, the test’s sensitivity at the <30% threshold on both specimen types was 100% (95% confidence interval [CI] venous 93.6%–100.0%; capillary 93.8%–100.0%). Specificity was 98.6% on venous specimens (95% CI 97.9%–99.1%) and 97.8% on capillary (95% CI 97.0%–98.5%). At the 70% threshold, the test’s sensitivity was 96.9% on venous specimens (95% CI 83.8%–99.9%) and 94.3% on capillary (95% CI 80.8%–99.3%). Specificity was 96.5% (95% CI 95.0%–97.6%) and 92.3% (95% CI 90.3%–94.0%) on venous and capillary specimens, respectively. Conclusion/Significance The STANDARD G6PD Test is a promising tool to aid in POC detection of G6PD deficiency in Brazil. Trial registration This study was registered with ClinicalTrials.gov (identifier: NCT04033640).


2021 ◽  
Author(s):  
David Cate ◽  
Helen Hsieh ◽  
Veronika Glukhova ◽  
Joshua D Bishop ◽  
H Gleda Hermansky ◽  
...  

<p></p><p>The global COVID-19 pandemic has created an urgent demand for large numbers of inexpensive, accurate, rapid, point-of-care diagnostic tests. Analyte-based assays are suitably inexpensive and can be rapidly mass-produced, but for sufficiently accurate performance they require highly optimized antibodies and assay conditions. We used an automated liquid handling system, customized to handle arrays of lateral flow immunoassay (LFA) tests in a high-throughput screen, to identify anti-nucleocapsid antibodies that will perform optimally in an LFA. We tested 1021 anti-nucleocapsid antibody pairs as LFA capture and detection reagents with the goal of highlighting pairs that have the greatest affinity for unique epitopes of the nucleocapsid protein of SARS-CoV-2 within the LFA format. In contrast to traditional antibody screening methods (e.g., ELISA, bio-layer interferometry), the method described here integrates real-time reaction kinetics with transport in, and immobilization directly onto, nitrocellulose. We have identified several candidate antibody pairs that are suitable for further development of an LFA for SARS-CoV-2.</p><p></p>


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1352
Author(s):  
Darius Riziki Martin ◽  
Nicole Remaliah Sibuyi ◽  
Phumuzile Dube ◽  
Adewale Oluwaseun Fadaka ◽  
Ruben Cloete ◽  
...  

The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Andrew W. Kirkpatrick ◽  
Jessica L. McKee ◽  
John M. Conly

AbstractCOVID-19 has impacted human life globally and threatens to overwhelm health-care resources. Infection rates are rapidly rising almost everywhere, and new approaches are required to both prevent transmission, but to also monitor and rescue infected and at-risk patients from severe complications. Point-of-care lung ultrasound has received intense attention as a cost-effective technology that can aid early diagnosis, triage, and longitudinal follow-up of lung health. Detecting pleural abnormalities in previously healthy lungs reveal the beginning of lung inflammation eventually requiring mechanical ventilation with sensitivities superior to chest radiographs or oxygen saturation monitoring. Using a paradigm first developed for space-medicine known as Remotely Telementored Self-Performed Ultrasound (RTSPUS), motivated patients with portable smartphone support ultrasound probes can be guided completely remotely by a remote lung imaging expert to longitudinally follow the health of their own lungs. Ultrasound probes can be couriered or even delivered by drone and can be easily sterilized or dedicated to one or a commonly exposed cohort of individuals. Using medical outreach supported by remote vital signs monitoring and lung ultrasound health surveillance would allow clinicians to follow and virtually lay hands upon many at-risk paucisymptomatic patients. Our initial experiences with such patients are presented, and we believe present a paradigm for an evolution in rich home-monitoring of the many patients expected to become infected and who threaten to overwhelm resources if they must all be assessed in person by at-risk care providers.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 661
Author(s):  
Luigi Piazzi ◽  
Stefano Acunto ◽  
Francesca Frau ◽  
Fabrizio Atzori ◽  
Maria Francesca Cinti ◽  
...  

Seagrass planting techniques have shown to be an effective tool for restoring degraded meadows and ecosystem function. In the Mediterranean Sea, most restoration efforts have been addressed to the endemic seagrass Posidonia oceanica, but cost-benefit analyses have shown unpromising results. This study aimed at evaluating the effectiveness of environmental engineering techniques generally employed in terrestrial systems to restore the P. oceanica meadows: two different restoration efforts were considered, either exploring non-degradable mats or, for the first time, degradable mats. Both of them provided encouraging results, as the loss of transplanting plots was null or very low and the survival of cuttings stabilized to about 50%. Data collected are to be considered positive as the survived cuttings are enough to allow the future spread of the patches. The utilized techniques provided a cost-effective restoration tool likely affordable for large-scale projects, as the methods allowed to set up a wide bottom surface to restore in a relatively short time without any particular expensive device. Moreover, the mats, comparing with other anchoring methods, enhanced the colonization of other organisms such as macroalgae and sessile invertebrates, contributing to generate a natural habitat.


Sign in / Sign up

Export Citation Format

Share Document