Hydraulic control of continuously stratified flow over an obstacle

2012 ◽  
Vol 700 ◽  
pp. 502-513 ◽  
Author(s):  
Kraig B. Winters ◽  
Laurence Armi

AbstractMotivated by the laboratory experiments of Browand & Winant (Geophys. Fluid Dyn., vol. 4, 1972, pp. 29–53), a series of two-dimensional numerical simulations of flow past a cylinder of diameter $d$ are run for different values of the approach Froude number ${\mathit{Fr}}_{o} = U/ Nd$ between $0. 02$ and $0. 2$ at $\mathit{Re}= O(100)$. The observed flow is characterized by blocking and upstream influence in front of the cylinder and by relatively thin, fast jets over the top and bottom of the cylinder. This continuously stratified flow can be understood in terms of an inviscid non-diffusive integral inertia–buoyancy balance reminiscent of reduced-gravity single-layer hydraulics, but one where the reduced gravity is coupled to the thickness of the jets. The proposed theoretical framework describes the flow upstream of the obstacle and at its crest. The most important elements of the theory are the inclusion of upstream influence in the form of blocked flow within an energetically constrained depth range and the recognition that the flow well above and well below the active, accelerated layers is dynamically uncoupled. These constraints determine, through continuity, the transport in the accelerated layers. Combining these results with the observation that the flow is asymmetric around the cylinder, i.e. hydraulically controlled, allows us to determine the active layer thicknesses, the effective reduced gravity and thus all of the integral flow properties of the fast layers in good agreement with the numerically computed flows.

2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Salaika Parvin ◽  
Nepal Chandra Roy ◽  
Rama Subba Reddy Gorla

AbstractIn this study, the ignition characteristics and the flow properties of the mixed convection flow are presented. Detailed formulations of the forced, natural and mixed convection problems have been discussed. In order to avoid inconvenient switch between the forced and natural convection we introduce a continuous transformation in the mixed convection. We make a comparison between these situations which reveal a good agreement. For mixed convection flow, the ignition distance is explicitly expressed as a function of the Prandtl number, reaction parameter and wall temperature. It has been observed that owing to the increase of the aforesaid parameters, the thermal ignition distance is reduced. Numerical results are illustrated for velocity, temperature, and concentration for different physical parameters. Furthermore, the development of combustion is presented by using streamlines, isotherms and isolines of fuel and oxidizer.


2014 ◽  
Vol 68 (1) ◽  
Author(s):  
Sahar Chagharvand ◽  
M. R. B. Hamid ◽  
M. R. Kamarudin ◽  
Mohsen Khalily

This paper presents a single layer planar slot antenna for dual band operation. The antenna is fed by a coplanar waveguide (CPW) with two inverted C-shaped resonators to achieve the dual band operation. The impedance bandwidth for ǀS11ǀ < -10dB is 14% in lower band and 7% in higher band. The antenna prototype’s electromagnetic performance, impedance bandwidth, radiation pattern, and antenna gain were measured. The proposed configuration offers a relatively compact, easy to fabricate and dual band performance providing gain between 2 and 4 dBi. The designed antenna has good dual bandwidth covering 3.5 WiMAX and 5.8 WLAN tasks. Experimental and numerical results also showed good agreement after comparison.


2012 ◽  
Vol 58 (211) ◽  
pp. 841-848 ◽  
Author(s):  
C.J.P.P. Smeets ◽  
W. Boot ◽  
A. Hubbard ◽  
R. Pettersson ◽  
F. Wilhelms ◽  
...  

AbstractWe present the design and first results from two experiments using a wireless subglacial sensor system (WiSe) that is able to transmit data through 2500 m thick ice. Energy consumption of the probes is minimized, enabling the transmission of data for at least 10 years. In July 2010 the first prototype of the system was used to measure subglacial pressure at the base and a temperature profile consisting of 23 probes in two 600 m deep holes at Russell Glacier, a land-terminating part of the West Greenland ice sheet near Kangerlussuaq. The time series of subglacial pressure show very good agreement between data from the WiSe system and the wired reference system. The wireless-measured temperature data were validated by comparison with the theoretical decrease of melting point with water pressure inside the water-filled hole directly after installation. To test the depth range of the WiSe system a second experiment using three different probe types and two different surface antennas was performed inside the 2537 m deep hole at NEEM. It is demonstrated that, with the proper combination of transmission power and surface antenna type, the WiSe system transmits data through 2500 m thick ice.


2008 ◽  
Vol 47-50 ◽  
pp. 33-36
Author(s):  
Chun Fu Chen ◽  
Yu Chou Wu

Mechanical sensitivity of a bossed and clamped layered isotropic circular plate with pretension in large deflection is evaluated. The approach extends Von-Karman’s plate theory for large deflection to a symmetrically layered plate with a center boss. The derived nonlinear governing equations are solved using a finite difference method incorporating a numerical iteration scheme in finding the lateral slope and radial force resultant. The obtained geometrical responses are further manipulated to calculate the associated mechanical sensitivity. For a 3-layered plate with nearly the same layer moduli, the results correlate well with those following available formulation for a single-layer isotropic plate. The developed approach is then implemented for various initial tensions, lateral pressures as well as different boss sizes and ratios between the layer moduli. The obtained numerical results show that, initial tension appears to have the strongest influence upon the radial variation of mechanical sensitivity over the top surface of the bossed layered plate. While both the size of center boss and magnitude of lateral pressure can still have a significant effect, the mechanical sensitivity seems to be insensitive to the change of the ratio between layer moduli for a bossed and symmetrically layered plate.


2020 ◽  
Vol 12 (9) ◽  
pp. 906-914
Author(s):  
O. Borazjani ◽  
M. Naser-Moghadasi ◽  
J. Rashed-Mohassel ◽  
R. A. Sadeghzadeh

AbstractTo prevent far-field radiation characteristics degradation while increasing bandwidth, an attempt has been made to design and fabricate a microstrip antenna. An electromagnetic band gap (EBG) structure, including a layer of a metallic ring on a layer of Rogers 4003C substrate, is used. For a better design, a patch antenna with and without the EBG substrate has been simulated. The results show that the bandwidth can be improved up to 1.6 GHz in X-band by adding the EBG substrate. Furthermore, using this structure, a dual-band antenna was obtained as well. Finally, to validate the simulation results, a comparison has been done between simulation data and experimental results which demonstrate good agreement.


2009 ◽  
Vol 1182 ◽  
Author(s):  
Ciaran P Moore ◽  
Richard John Blaikie ◽  
Matthew D Arnold

AbstractSpatial-frequency transfer functions are regularly used to model the imaging performance of near-field �superlens� systems. However, these do not account for interactions between the object that is being imaged and the superlens itself. As the imaging in these systems is in the near field, such interactions are important to consider if accurate performance estimates are to be obtained. We present here a simple analytical modification that can be made to the transfer function to account for near-field interactions for objects consisting of small apertures in otherwise-continuous metal screens. The modified transfer functions are evaluated by comparison with full-field finite-element simulations for representative single-layer and multi-layer silver superlenses, and good agreement is found.


2018 ◽  
Vol 10 (8) ◽  
pp. 896-903 ◽  
Author(s):  
Amit Ranjan Azad ◽  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan

AbstractThis paper presents a substrate-integrated waveguide (SIW) mixed electric and magnetic coupling structure implemented on a single-layer substrate to create finite transmission zeros (TZs), which can be used to design microwave filters with higher frequency selectivity. Mixed coupling is realized by three slot-lines on the top metal plane combined with an iris-window between two adjacent SIW cavities. The electric and magnetic coupling can be separately controlled by adjusting the dimensions of the slot-lines and the width of the iris-window, and a controllable TZ below or above the passband can be produced. Furthermore, a detailed analysis of the mixed coupling structure is presented. To demonstrate the validity of the proposed structure, third- and fourth-order cross-coupled generalized Chebyshev bandpass filters are designed and fabricated using the standard printed circuit board process. The experimental results are in good agreement with the simulation results. The filters exhibit simple structure and good frequency selectivity.


Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3352
Author(s):  
Sandrine van Frank ◽  
Elisabeth Leiss-Holzinger ◽  
Michael Pfleger ◽  
Christian Rankl

Terahertz time-domain spectroscopy is a useful technique to characterize layered samples and thin films. It gives access to their optical properties and thickness. Such measurements are done in transmission, which requires access to the sample from opposite sides. In reality this is not always possible. In such cases, reflection measurements are the only option, but they are more difficult to implement. Here we propose a method to characterize films in reflection geometry using a polarimetric approach based on the identification of Brewster angle and modeling of the measured signal to extract the refractive index and thickness of the sample. The technique is demonstrated experimentally on an unsupported single layer thin film sample. The extracted optical properties and thickness were in good agreement with established transmission terahertz spectroscopy measurements. The new method has the potential to cover a wide range of applications, both for research and industrial purposes.


Author(s):  
Sara Corvaro ◽  
Alessandro Mancinelli ◽  
Maurizio Brocchini

The analysis of the hydrodynamics over porous media is of interest for many coastal engineering applications as the wave propagation over permeable structures or gravel beaches. The study of a boundary layer evolving over permeable beds is important to a better understanding of the interactions between the flow over and inside the porous medium. An experimental study has been performed to analyze the dynamics produced when waves propagate over two kinds of permeable beds: spheres (regular permeability) and natural stones. For comparative purposes the same analysis has been extended to two rough beds made, respectively, by a single layer of spheres and natural stones. We here focus on the correlation between the wave energy reduction induced by a porous bed and the flow resistance. An experimental law for the prediction of the friction factor is found by using the log-fit method in analogy to that reported in Dixen et al. (2008) for rough beds. Moreover, inspection of the turbulent velocity components allows one to evaluate the bottom shear stress. The latter analysis has been performed for different permeable beds (regular and irregular beds). A good agreement between the bottom shear stress behavior and the wave height attenuation over rough and permeable beds (Corvaro et al. 2010 and Corvaro et al. 2014a) has been observed.


Sign in / Sign up

Export Citation Format

Share Document