scholarly journals Layer formation in sedimentary fingering convection

2017 ◽  
Vol 816 ◽  
pp. 268-305 ◽  
Author(s):  
J. F. Reali ◽  
P. Garaud ◽  
A. Alsinan ◽  
E. Meiburg

When particles settle through a stable temperature or salinity gradient they can drive an instability known as sedimentary fingering convection. This phenomenon is thought to occur beneath sediment-rich river plumes in lakes and oceans, in the context of marine snow where decaying organic materials serve as the suspended particles or in the atmosphere in the presence of aerosols or volcanic ash. Laboratory experiments of Houk & Green (Deep-Sea Res., vol. 20, 1973, pp. 757–761) and Green (Sedimentology, vol. 34(2), 1987, pp. 319–331) have shown sedimentary fingering convection to be similar to the more commonly known thermohaline fingering convection in many ways. Here, we study the phenomenon using three-dimensional direct numerical simulations. We find evidence for layer formation in sedimentary fingering convection in regions of parameter space where it does not occur for non-sedimentary systems. This is due to two complementary effects. Sedimentation affects the turbulent fluxes and broadens the region of parameter space unstable to the $\unicode[STIX]{x1D6FE}$-instability (Radko, J. Fluid Mech., vol. 497, 2003, pp. 365–380) to include systems at larger density ratios. It also gives rise to a new layering instability that exists in $\unicode[STIX]{x1D6FE}$-stable regimes. The former is likely quite ubiquitous in geophysical systems for sufficiently large settling velocities, while the latter probably grows too slowly to be relevant, at least in the context of sediments in water.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Connor Behan ◽  
Lorenzo Di Pietro ◽  
Edoardo Lauria ◽  
Balt C. van Rees

Abstract We study conformal boundary conditions for the theory of a single real scalar to investigate whether the known Dirichlet and Neumann conditions are the only possibilities. For this free bulk theory there are strong restrictions on the possible boundary dynamics. In particular, we find that the bulk-to-boundary operator expansion of the bulk field involves at most a ‘shadow pair’ of boundary fields, irrespective of the conformal boundary condition. We numerically analyze the four-point crossing equations for this shadow pair in the case of a three-dimensional boundary (so a four-dimensional scalar field) and find that large ranges of parameter space are excluded. However a ‘kink’ in the numerical bounds obeys all our consistency checks and might be an indication of a new conformal boundary condition.


2017 ◽  
Vol 21 (11) ◽  
pp. 5503-5515 ◽  
Author(s):  
Hiroyuki Hirashima ◽  
Francesco Avanzi ◽  
Satoru Yamaguchi

Abstract. The heterogeneous movement of liquid water through the snowpack during precipitation and snowmelt leads to complex liquid water distributions that are important for avalanche and runoff forecasting. We reproduced the formation of capillary barriers and the development of preferential flow through snow using a three-dimensional water transport model, which was then validated using laboratory experiments of liquid water infiltration into layered, initially dry snow. Three-dimensional simulations assumed the same column shape and size, grain size, snow density, and water input rate as the laboratory experiments. Model evaluation focused on the timing of water movement, thickness of the upper layer affected by ponding, water content profiles and wet snow fraction. Simulation results showed that the model reconstructs relevant features of capillary barriers, including ponding in the upper layer, preferential infiltration far from the interface, and the timing of liquid water arrival at the snow base. In contrast, the area of preferential flow paths was usually underestimated and consequently the averaged water content in areas characterized by preferential flow paths was also underestimated. Improving the representation of preferential infiltration into initially dry snow is necessary to reproduce the transition from a dry-snow-dominant condition to a wet-snow-dominant one, especially in long-period simulations.


2017 ◽  
Vol 17 (2) ◽  
pp. 1187-1205 ◽  
Author(s):  
Guangliang Fu ◽  
Fred Prata ◽  
Hai Xiang Lin ◽  
Arnold Heemink ◽  
Arjo Segers ◽  
...  

Abstract. Using data assimilation (DA) to improve model forecast accuracy is a powerful approach that requires available observations. Infrared satellite measurements of volcanic ash mass loadings are often used as input observations for the assimilation scheme. However, because these primary satellite-retrieved data are often two-dimensional (2-D) and the ash plume is usually vertically located in a narrow band, directly assimilating the 2-D ash mass loadings in a three-dimensional (3-D) volcanic ash model (with an integral observational operator) can usually introduce large artificial/spurious vertical correlations.In this study, we look at an approach to avoid the artificial vertical correlations by not involving the integral operator. By integrating available data of ash mass loadings and cloud top heights, as well as data-based assumptions on thickness, we propose a satellite observational operator (SOO) that translates satellite-retrieved 2-D volcanic ash mass loadings to 3-D concentrations. The 3-D SOO makes the analysis step of assimilation comparable in the 3-D model space.Ensemble-based DA is used to assimilate the extracted measurements of ash concentrations. The results show that satellite DA with SOO can improve the estimate of volcanic ash state and the forecast. Comparison with both satellite-retrieved data and aircraft in situ measurements shows that the effective duration of the improved volcanic ash forecasts for the distal part of the Eyjafjallajökull volcano is about 6 h.


1998 ◽  
Vol 27 ◽  
pp. 285-289 ◽  
Author(s):  
S. G. Moreton ◽  
J. L. Smellie

Quaternary deposits in six sediment cores from the Scotia Sea, Antarctica, were examined for the presence of volcanic ash layers. The cores were recovered from water depths of 3369-4025 m. Altogether, 23 ash layers were found, 18 of which have been investigated by electron-probe microanalysis. Deception Island is identified as the source of all the ash layers analyzed. The upper ash layer in each core can be correlated across all six cores, over a distance of -100 km, on the basis of its unusual bimodal composition, major oxide geochemistry and stratigraphie position. Two other ash layers can also be correlated between several of the cores.


2021 ◽  
Vol 15 (1) ◽  
pp. 7628-7636
Author(s):  
D. Belakhal ◽  
Kouider Rahmani ◽  
Amel Elkaroui Elkaroui ◽  
Syrine Ben Haj Ayech ◽  
Nejla Mahjoub Saïd ◽  
...  

In the current investigation, numerical study of a thermal jet of asymmetric (rectangular and elliptical) and axisymmetric (circular) geometry was investigated with variable density to verify the impact of the ratio of density and geometry on the generation of entropy. The central jet was brought to different temperatures (194, 293 and 2110 K) to obtain density ratios (0.66, 1 and 7.2) identical to a mixture jet ((Air-CO2), (Air-Air) and (Air-He)), respectively. Solving the three-dimensional numerical resolution of the Navier Stocks for turbulent flow permanent enclosed on the turbulence model K-εstandard was made. The results acquired are compared with that carried out in previous experimental studies, where it was concluded that, the axisymmetric (circular) geometry increases the entropy generation.


Author(s):  
Jeffrey S. Oishi ◽  
Geoffrey M. Vasil ◽  
Morgan Baxter ◽  
Andrew Swan ◽  
Keaton J. Burns ◽  
...  

The magnetorotational instability (MRI) occurs when a weak magnetic field destabilizes a rotating, electrically conducting fluid with inwardly increasing angular velocity. The MRI is essential to astrophysical disc theory where the shear is typically Keplerian. Internal shear layers in stars may also be MRI-unstable, and they take a wide range of profiles, including near-critical. We show that the fastest growing modes of an ideal magnetofluid are three-dimensional provided the shear rate, S , is near the two-dimensional onset value, S c . For a Keplerian shear, three-dimensional modes are unstable above S  ≈ 0.10 S c , and dominate the two-dimensional modes until S  ≈ 2.05 S c . These three-dimensional modes dominate for shear profiles relevant to stars and at magnetic Prandtl numbers relevant to liquid-metal laboratory experiments. Significant numbers of rapidly growing three-dimensional modes remainy well past 2.05 S c . These finding are significant in three ways. First, weakly nonlinear theory suggests that the MRI saturates by pushing the shear rate to its critical value. This can happen for systems, such as stars and laboratory experiments, that can rearrange their angular velocity profiles. Second, the non-normal character and large transient growth of MRI modes should be important whenever three-dimensionality exists. Finally, three-dimensional growth suggests direct dynamo action driven from the linear instability.


2020 ◽  
Vol 90 (7) ◽  
pp. 687-700
Author(s):  
Jamie L. Hizzett ◽  
Esther J. Sumner ◽  
Matthieu J.B. Cartigny ◽  
Michael A. Clare

ABSTRACT Seafloor sediment density flows are the primary mechanism for transporting sediment to the deep sea. These flows are important because they pose a hazard to seafloor infrastructure and deposit the largest sediment accumulations on Earth. The cohesive sediment content of a flow (i.e., clay) is an important control on its rheological state (e.g., turbulent or laminar); however, how clay becomes incorporated into a flow is poorly understood. One mechanism is by the abrasion of (clay-rich) mud clasts. Such clasts are common in deep-water deposits, often thought to have traveled over large (more than tens of kilometers) distances. These long travel distances are at odds with previous experimental work that suggests that mud clasts should disintegrate rapidly through abrasion. To address this apparent contradiction, we conduct laboratory experiments using a counter rotating annular flume to simulate clast transport in sediment density flows. We find that as clay clasts roll along a sandy floor, surficial armoring develops and reduces clast abrasion and thus enhances travel distance. For the first time we show armoring to be a process of renewal and replenishment, rather than forming a permanent layer. As armoring reduces the rate of clast abrasion, it delays the release of clay into the parent flow, which can therefore delay flow transformation from turbidity current to debris flow. We conclude that armored mud clasts can form only within a sandy turbidity current; hence where armored clasts are found in debrite deposits, the parent flow must have undergone flow transformation farther up slope.


Author(s):  
Esmaiil Ghasemisahebi ◽  
Hassan Bararnia ◽  
Soheil Soleimanikutanaei ◽  
Cheng-Xian Lin

In this study deformation and breakup of a falling drop which is surrounded by another liquid are modeled numerically. The drop is influenced by an external electric field which is applied uniformly on the side walls of the domain. An open-source volume-of-fluid solver, Gerris with dynamic adaptive grid refinement has been used for numerically modeling the three-dimensional deformation of a falling droplet. The numerical results are presented for various values of density ratios and electrical conductivity and permittivity. The current numerical results are compared with previous experimental and analytical works which shows a great agreement between them.


Sign in / Sign up

Export Citation Format

Share Document