scholarly journals Enhanced ultraviolet absorption in graphene by aluminum and magnesium hole-arrays

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xueling Cheng ◽  
Yunshan Wang

AbstractOptoelectronic devices in the UV range have many applications including deep-UV communications, UV photodetectors, UV spectroscopy, etc. Graphene has unique exciton resonances, that have demonstrated large photosensitivity across the UV spectrum. Enhancing UV absorption in graphene has the potential to boost the performance of the various opto-electronic devices. Here we report numerical study of UV absorption in graphene on aluminum and magnesium hole-arrays. The absorption in a single-layer graphene on aluminum and magnesium hole-arrays reached a maximum value of 28% and 30% respectively, and the absorption peak is tunable from the UV to the visible range. The proposed graphene hybrid structure does not require graphene to be sandwiched between different material layers and thus is easy to fabricate and allows graphene to interact with its surroundings.

2018 ◽  
Vol 32 (19) ◽  
pp. 1840052
Author(s):  
Ruo-Nong Song ◽  
Wen-Cheng Ke

This study presents the electrical properties of graphene that directly is contact on two types of p-type GaN thin films. The diameter of several hundred nanometer V-pits were formed on the p-GaN thin films by adjusting the NH3 flow rate during the metal organic chemical vapor deposition epitaxial process. The single-layer graphene with a high transmittance of 97% in the visible range was transferred on p-GaN thin films to form an Ohmic contact. The V-pits provide more carrier transport paths that promote the carrier tunneling into p-GaN thin films, resulting in a better Ohmic contact performance. In addition, the increased current value was attributed to the presence of V-pits on the p-GaN thin films.


2021 ◽  
Vol 11 (40) ◽  
pp. 117-117
Author(s):  
Ursula Wolf ◽  
Sabine Klein ◽  
Annegret Sandig ◽  
Stephan Baumgartner

Background Several series of experiments from our research group have shown ultraviolet (UV) light transmission of homeopathic preparations to slightly but significantly differ from controls. We now investigated whether visible and near infrared spectroscopy were also useful for exploring properties of homeopathic preparations. Materials and methods Homeopathic preparations of copper sulfate (CuSO4), hypericum and sulfur (S8) were produced in 30 sequential steps of 1:100 dilutions (c-preparations). As controls, succussed potentization medium was used. Transmission of the samples from 190-1100nm was measured 4 times on 5 days with a double beam Shimadzu UV PC 1601 spectrophotometer. To correct for the daily variations of the spectrophotometer, transmission of the samples at each nm was divided by the average transmission of the controls. Median transmissions of the samples were calculated for the ranges of 190-340nm (near and middle UV), 340-640nm (visible light without red), and 640-1100nm (red and near infrared). Differences in the median transmission between potency levels from 6c to 30c were determined using Kruskal-Wallis and Jonckheere-Terpstra tests. Results Differences in transmissions of the various potency levels were more pronounced in the UV range than in the visible or red/near infrared range. The Kruskal-Wallis test revealed significant differences for homeopathic preparations of CuSO4, hypericum and S8 in the UV range (p=0.032, 0.008, 0.009, respectively) and of S8 in the visible range (p=0.026). Jonckheere's test showed a tendency towards ascending medians with ascending potency levels for CuSO4 in the UV range (p=0.080). Significant trends were revealed for hypericum in the visible range (p=0.042, descending medians) and S8 in the UV range (p=0.015, ascending medians). Conclusion UV spectroscopy seemed to be more suitable for investigating homeopathic preparations than visible or near infrared spectroscopy, since differences in transmission were more pronounced in the UV range.


2019 ◽  
Vol 33 (31) ◽  
pp. 1950384
Author(s):  
Di Lu ◽  
Yu-E Yang ◽  
Weichun Zhang ◽  
Caixia Wang ◽  
Jining Fang ◽  
...  

We have investigated Raman spectra of the G and 2D lines of a single-layer graphene (SLG) with metallic contacts. The shift of the G and 2D lines is correlated to two different factors. Before performing annealing treatment or annealing under low temperature, the electron transfer on graphene surface is dominated by nonuniform strain effect. As the annealing treatment is enhanced, however, a suitable annealing treatment can eliminate the nonuniform strain effect where the relative work function (WF) between graphene and metal becomes a main factor to determine electronic transfer. Moreover, it is confirmed that the optimized annealing treatment can also decrease effectively the structural defect and induced disorder in graphene due to metallic contacts.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


Sign in / Sign up

Export Citation Format

Share Document