scholarly journals The Mouse Xist Gene: a Model for Studying the Gametic Imprinting Phenomenon

1996 ◽  
Vol 45 (1-2) ◽  
pp. 199-204 ◽  
Author(s):  
M. Zuccotti ◽  
M. Monk

In mammals, normal embryonic development requires differential genomic imprinting of male and female gametes [1, 2]. Many investigations have been directed towards the understanding of the molecular mechanisms of imprinting and the timing of establishment of the imprint during gametogenesis and its erasure during development.Methylation is the focus of many of these studies as it has been known for some time that this epigenetic modification of the DNA correlates with the status of gene activity. So far, five imprinted genes, expressed from only one of the parental alleles, have been found to be differentially methylated in somatic tissue: mouse Igf2 [3] and Xist [4] and human SNRPN [5, 6] expressed from the paternal allele; mouse Igf2r [7] and H19 [8, 9] expressed from the maternal allele. However, so far, a gametic methylation imprint has been detected for only two of these genes: in an intron region of mouse Igf2r [7], and in the promoter region [10] and the first exon [11] of the Xist (X-inactivation-specific transcript [12, 13] gene.The data accumulated for the Xist gene, during different phases of gametogenesis and development, provides the most comprehensive story about the role of methylation as a primary gametic imprint, and on the timing of its establishment during gametogenesis and erasure during development. Methylation studies have now been performed during oogenesis and spermatogenesis [Norris et al., 1994; 11] and in mature gametes and during early stages of development [10, 11]. In addition, expression of the gene has been described during gametogenesis [14-16] and throughout early development [4-17].

Author(s):  
Yating Xu ◽  
Menggang Zhang ◽  
Qiyao Zhang ◽  
Xiao Yu ◽  
Zongzong Sun ◽  
...  

RNA methylation is considered a significant epigenetic modification, a process that does not alter gene sequence but may play a necessary role in multiple biological processes, such as gene expression, genome editing, and cellular differentiation. With advances in RNA detection, various forms of RNA methylation can be found, including N6-methyladenosine (m6A), N1-methyladenosine (m1A), and 5-methylcytosine (m5C). Emerging reports confirm that dysregulation of RNA methylation gives rise to a variety of human diseases, particularly hepatocellular carcinoma. We will summarize essential regulators of RNA methylation and biological functions of these modifications in coding and noncoding RNAs. In conclusion, we highlight complex molecular mechanisms of m6A, m5C, and m1A associated with hepatocellular carcinoma and hope this review might provide therapeutic potent of RNA methylation to clinical research.


2015 ◽  
Vol 33 (4) ◽  
pp. 492-497 ◽  
Author(s):  
Massimo Pinzani

Progressive accumulation of fibrillar extracellular matrix (ECM) in the liver is the consequence of reiterated liver tissue damage due to infective (mostly hepatitis B and C viruses), toxic/drug-induced, metabolic and autoimmune causes, and the relative chronic activation of the wound-healing reaction. The process may result in clinically evident liver cirrhosis and hepatic failure. Although cirrhosis is the common result of progressive fibrogenesis, there are distinct patterns of fibrotic development related to the underlying disorders causing the fibrosis. These different patterns of fibrogenic evolution are related to different factors and particularly: (1) the topographic localization of tissue damage, (2) the relative concentration of profibrogenic factors and (3) the prevalent profibrogenic mechanism(s). The mechanisms responsible for the fibrogenic evolution of chronic liver diseases can be summarized in three main groups: chronic activation of the wound-healing reaction, oxidative stress-related molecular mechanisms, and the derangement of the so-called ‘epithelial-mesenchymal' interaction leading to the generation of reactive cholangiocytes and peribiliary fibrosis. Most of the knowledge on the cell and molecular biology of hepatic fibrosis derives from in vitro studies employing culture of activated hepatic stellate cells isolated from rat, mouse or human liver. It is now evident that other ECM-producing cells, i.e. fibroblasts and myofibroblasts of the portal tract and circulating ‘fibrocytes', are likely to contribute to liver fibrosis. More recently, the attention is progressively shifting to the profibrotic microenvironment of the liver with increasing interest for the role of immune cells and specific subsets of macrophages regulating the progression or the regression of fibrosis, the role of intestinal microbiota and the influence of tissue stiffness. Other major areas of development include the role of tissue hypoxia and the establishment of an anaerobic proinflammatory environment and the influence of epigenetic modification in conditioning the progression of fibrosis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Guo Huang ◽  
Juan Chen ◽  
Jun Zhou ◽  
Shuai Xiao ◽  
Weihong Zeng ◽  
...  

AbstractThyroid cancer remains the most prevailing endocrine malignancy, and a progressively increasing incidence rate has been observed in recent years, with 95% of thyroid cancer represented by differentiated thyroid carcinomas. The genetics and epigenetics of thyroid cancer are gradually increasing, and gene mutations and methylation changes play an important roles in its occurrence and development. Although the role of RAS and BRAF mutations in thyroid cancer have been partially clarified,but the pathogenesis and molecular mechanisms of thyroid cancer remain to be elucidated. Epigenetic modification refer to genetic modification that does not change the DNA sequence of a gene but causes heritable phenotypic changes in its expression. Epigenetic modification mainly includes four aspects: DNA methylation, chromatin remodelling, noncoding RNA regulation, and histone modification. This article reviews the importance of thyroid cancer epigenetic modification and BRAF gene mutation in the treatment of thyroid cancer.


2015 ◽  
Vol 308 (11) ◽  
pp. F1189-F1196 ◽  
Author(s):  
Stephanie Stangenberg ◽  
Hui Chen ◽  
Muh Geot Wong ◽  
Carol A. Pollock ◽  
Sonia Saad

The role of an adverse in utero environment in the programming of chronic kidney disease in the adult offspring is increasingly recognized. The cellular and molecular mechanisms linking the in utero environment and future disease susceptibility remain unknown. Maternal smoking is a common modifiable adverse in utero exposure, potentially associated with both mitochondrial dysfunction and epigenetic modification in the offspring. While studies are emerging that point toward a key role of mitochondrial dysfunction in acute and chronic kidney disease, it may have its origin in early development, becoming clinically apparent when secondary insults occur. Aberrant epigenetic programming may add an additional layer of complexity to orchestrate fibrogenesis in the kidney and susceptibility to chronic kidney disease in later life. In this review, we explore the evidence for mitochondrial dysfunction and epigenetic modification through aberrant DNA methylation as key mechanistic aspects of fetal programming of chronic kidney disease and discuss their potential use in diagnostics and targets for therapy.


Author(s):  
L.J. Chen ◽  
Y.F. Hsieh

One measure of the maturity of a device technology is the ease and reliability of applying contact metallurgy. Compared to metal contact of silicon, the status of GaAs metallization is still at its primitive stage. With the advent of GaAs MESFET and integrated circuits, very stringent requirements were placed on their metal contacts. During the past few years, extensive researches have been conducted in the area of Au-Ge-Ni in order to lower contact resistances and improve uniformity. In this paper, we report the results of TEM study of interfacial reactions between Ni and GaAs as part of the attempt to understand the role of nickel in Au-Ge-Ni contact of GaAs.N-type, Si-doped, (001) oriented GaAs wafers, 15 mil in thickness, were grown by gradient-freeze method. Nickel thin films, 300Å in thickness, were e-gun deposited on GaAs wafers. The samples were then annealed in dry N2 in a 3-zone diffusion furnace at temperatures 200°C - 600°C for 5-180 minutes. Thin foils for TEM examinations were prepared by chemical polishing from the GaA.s side. TEM investigations were performed with JE0L- 100B and JE0L-200CX electron microscopes.


2020 ◽  
Vol 48 (3) ◽  
pp. 1019-1034 ◽  
Author(s):  
Rachel M. Woodhouse ◽  
Alyson Ashe

Gene regulatory information can be inherited between generations in a phenomenon termed transgenerational epigenetic inheritance (TEI). While examples of TEI in many animals accumulate, the nematode Caenorhabditis elegans has proven particularly useful in investigating the underlying molecular mechanisms of this phenomenon. In C. elegans and other animals, the modification of histone proteins has emerged as a potential carrier and effector of transgenerational epigenetic information. In this review, we explore the contribution of histone modifications to TEI in C. elegans. We describe the role of repressive histone marks, histone methyltransferases, and associated chromatin factors in heritable gene silencing, and discuss recent developments and unanswered questions in how these factors integrate with other known TEI mechanisms. We also review the transgenerational effects of the manipulation of histone modifications on germline health and longevity.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


2018 ◽  
Vol 15 (1) ◽  
pp. 55-72
Author(s):  
Herlin Hamimi ◽  
Abdul Ghafar Ismail ◽  
Muhammad Hasbi Zaenal

Zakat is one of the five pillars of Islam which has a function of faith, social and economic functions. Muslims who can pay zakat are required to give at least 2.5 per cent of their wealth. The problem of poverty prevalent in disadvantaged regions because of the difficulty of access to information and communication led to a gap that is so high in wealth and resources. The instrument of zakat provides a paradigm in the achievement of equitable wealth distribution and healthy circulation. Zakat potentially offers a better life and improves the quality of human being. There is a human quality improvement not only in economic terms but also in spiritual terms such as improving religiousity. This study aims to examine the role of zakat to alleviate humanitarian issues in disadvantaged regions such as Sijunjung, one of zakat beneficiaries and impoverished areas in Indonesia. The researcher attempted a Cibest method to capture the impact of zakat beneficiaries before and after becoming a member of Zakat Community Development (ZCD) Program in material and spiritual value. The overall analysis shows that zakat has a positive impact on disadvantaged regions development and enhance the quality of life of the community. There is an improvement in the average of mustahik household incomes after becoming a member of ZCD Program. Cibest model demonstrates that material, spiritual, and absolute poverty index decreased by 10, 5, and 6 per cent. Meanwhile, the welfare index is increased by 21 per cent. These findings have significant implications for developing the quality of life in disadvantaged regions in Sijunjung. Therefore, zakat is one of the instruments to change the status of disadvantaged areas to be equivalent to other areas.


2018 ◽  
Vol 26 (2) ◽  
pp. 205-226
Author(s):  
Bonolo Ramadi Dinokopila ◽  
Rhoda Igweta Murangiri

This article examines the transformation of the Kenya National Commission on Human Rights (KNCHR) and discusses the implications of such transformation on the promotion and protection of human rights in Kenya. The article is an exposition of the powers of the Commission and their importance to the realisation of the Bill of Rights under the 2010 Kenyan Constitution. This is done from a normative and institutional perspective with particular emphasis on the extent to which the UN Principles Relating to the Status of National Institutions for the promotion and protection of human rights (the Paris Principles, 1993) have been complied with. The article highlights the role of national human rights commissions in transformative and/or transitional justice in post-conflict Kenya. It also explores the possible complementary relationship(s) between the KNCHR and other Article 59 Commissions for the better enforcement of the bill of rights.


Sign in / Sign up

Export Citation Format

Share Document