Siticulosa Apulia

Antiquity ◽  
1946 ◽  
Vol 20 (80) ◽  
pp. 191-200 ◽  
Author(s):  
John Bradford ◽  
P. R. Williams-Hunt

‘Parched’ Apulia still describes the dominant characteristic of this region of southern Italy as aptly as when Horace wrote. The climate is one of sharp contrasts, especially apparent on the treeless plain round Foggia (the district known as the Capitanata). There, some midwinter snow and a few intermittent days of heavy rain between January and March are offset by almost continuous, and often pitiless, days of sunshine from April to the end of September, with the thermometer reaching 105° in the shade and scorching winds from the North in late summer absorbing what little moisture remains. The average annual rainfall at Foggia is only 18-19 inches, or no more than in parts of lowland Tunisia; but the fertile soil is today intensively cultivated by dry farming, with immense open arable fields. Harvesting begins at the end of May and, as there is often little depth of cultivated soil above the absorbent subsoils, by early in July the dusty ground is baked as hard as iron.

2020 ◽  
Author(s):  
David Whipp ◽  
Lars Kaislaniemi

<p>Orogen fold-and-thrust belts (FTBs) often have a tapering wedge geometry in cross section, which develops as a result of the balance between stresses acting along the detachment fault beneath the wedge, its internal strength, and the average slope of the surface topography from the back of the wedge to its toe. The geometry of these critical wedges is thus sensitive to changes in factors that influence stress along the wedge base or the surface slope, including changes in the mechanical strength of the detachment fault or variations in surface erosional efficiency. The Andes of eastern Bolivia have differences in the basal detachment strength, resulting from a thinning of the weak Paleozoic sediments that host the basal detachment, and average annual rainfall north and south of the bend in the orogen at ~18°S. In addition, the orogen and active Subandean FTB are ~50% narrower in the north, where both the detachment layer strength may be higher and the average annual rainfall is around eight times that in the south. This raises the question: What controls orogen width in the Bolivian Andes?</p><p>We explore the effects of variations in the mechanical strength of the basal detachment and surface erosional efficiency on FTB width using 3D numerical geodynamic models with lateral variations in these parameters along strike. Our numerical experiments calculate the orogen geometry using the DOUAR geodynamic modelling software (Braun et al., 2008) coupled to the FastScape surface process model (Braun and Willett, 2013). The model design includes an elevated plateau region that is thrust over a weak frictional plastic detachment layer, resulting in growth of an orogenic wedge at the distal plateau margin. The plateau geometry is also bent, including a 40° change in margin orientation along strike; changes in the erosional efficiency and detachment strength are varied on either side of this bend. We find that changes in detachment strength result in significant differences in FTB width, while changes in erosional efficiency have little effect. Increasing the detachment strength by two results in limited forward propagation of the thrust front and a reduction in the FTB width by roughly 50% compared to the weaker side of the model. In contrast, increasing precipitation by a factor of three (as a proxy for enhanced erosional efficiency) does not significantly effect the FTB width. These results compare well with the observed variations in orogen width in the Bolivian Andes, suggesting the FTB width may be controlled by the detachment strength, while variations in erosional efficiency have a limited effect. Ongoing work is exploring how changes in detachment strength and erosional efficiency may affect thermochronometer ages predicted from the numerical experiments, and how the predicted ages compare to ages observed in the Bolivian Andes.</p>


Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2541 ◽  
Author(s):  
Tommaso Caloiero ◽  
Eugenio Filice ◽  
Roberto Coscarelli ◽  
Gaetano Pellicone

In order to investigate the tendency in rainfall amount in Calabria (southern Italy), in this work, monthly rainfall series were first tested for homogeneity and then a trend analysis was performed. In particular, a homogenization approach based on the Climatol method was applied to homogenize monthly climatological series. Then, the Mann–Kendall non-parametric test and the Theil–Sen estimator were applied to evaluate the presence of trends and their significance in the monthly, seasonal and annual rainfall series. Moreover, the trend slopes were further evaluated with a linear regression analysis. At the annual scale, results evidenced a decreasing trend mainly in the north-eastern part of the region. At the seasonal scale, a spatial distributed negative trend in winter, and a positive trend in summer, mainly localized in the north-western part of the region, were identified. Finally, on a monthly scale negative trends spreading across the region were detected in January and December, with an opposite behavior in July and especially in September, when almost the entire region presented a positive trend.


Author(s):  
B.K. Cameron

THE PROPERTY to be discussed is a mixed sheep and cropping unit, situated ei ht a miles east of Ashburton and midway between the Ra aia and the Ashburton rivers. Average annual rainfall is 27 in., evenly spread, but there is very high summer evaporation and therefore frequent droughts. On average, the soil is below wilting point for 40 to 50 days each summer. Winters are cold with the soil temperature being below 48°F for about four months each year. The soil is a Lismore stony silt loam averaging 9 in. in depth over gravel.


1991 ◽  
Vol 23 (1-3) ◽  
pp. 49-55
Author(s):  
E. H. baron van Tuyll van Serooskerken

An inventory is made of the effects of sea level rise and expected climatic change on the level of the district water authorities in the Netherlands and especially the “hoogheemraadschap” of Rhineland in the next 100-200 years. Special attention is paid to the effects on land utilization, coastal defence and water control. The first is hard to describe by lack of research, the second can already be determined in terms of cost; the third can be described in its effects on brackishness and water provision with indication of policies and measures to be taken. Preliminary conclusions are that larger efforts on coastal defence - even with present techniques - will be a realistic answer in terms of cost. The foreseen increase of brackishness in area and salt concentration, will give a significant extra need for fresh water. High cost and even higher risks have to be expected with regard to measures to neutralize the effects of a water surplus in winter and a growing water shortage in (late) summer, while the cost will further grow. Because of the effect a larger area must be drained off and water has to be raised higher as the Netherlands will sink in relation to the North Sea.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 118
Author(s):  
Giovanni Ruggieri ◽  
Vincenzo Allocca ◽  
Flavio Borfecchia ◽  
Delia Cusano ◽  
Palmira Marsiglia ◽  
...  

In many Italian regions, and particularly in southern Italy, karst aquifers are the main sources of drinking water and play a crucial role in the socio-economic development of the territory. Hence, estimating the groundwater recharge of these aquifers is a fundamental task for the proper management of water resources, while also considering the impacts of climate changes. In the southern Apennines, the assessment of hydrological parameters that is needed for the estimation of groundwater recharge is a challenging issue, especially for the spatial and temporal inhomogeneity of networks of rain and air temperature stations, as well as the variable geomorphological features and land use across mountainous karst areas. In such a framework, the integration of terrestrial and remotely sensed data is a promising approach to limit these uncertainties. In this research, estimations of actual evapotranspiration and groundwater recharge using remotely sensed data gathered by the Moderate Resolution Imaging Spectrometer (MODIS) satellite in the period 2000–2014 are shown for karst aquifers of the southern Apennines. To assess the uncertainties affecting conventional methods based on empirical formulas, the values estimated by the MODIS dataset were compared with those calculated by Coutagne, Turc, and Thornthwaite classical empirical formulas, which were based on the recordings of meteorological stations. The annual rainfall time series of 266 rain gauges and 150 air temperature stations, recorded using meteorological networks managed by public agencies in the period 2000–2014, were considered for reconstructing the regional distributed models of actual evapotranspiration (AET) and groundwater recharge. Considering the MODIS AET, the mean annual groundwater recharge for karst aquifers was estimated to be about 448 mm·year−1. In contrast, using the Turc, Coutagne, and Thornthwaite methods, it was estimated as being 494, 533, and 437 mm·year−1, respectively. The obtained results open a new methodological perspective for the assessment of the groundwater recharge of karst aquifers at the regional and mean annual scales, allowing for limiting uncertainties and taking into account a spatial resolution greater than that of the existing meteorological networks. Among the most relevant results obtained via the comparison of classical approaches used for estimating evapotranspiration is the good matching of the actual evapotranspiration estimated using MODIS data with the potential evapotranspiration estimated using the Thornthwaite formula. This result was considered linked to the availability of soil moisture for the evapotranspiration demand due to the relevant precipitation in the area, the general occurrence of soils covering karst aquifers, and the dense vegetation.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Otman EL Mountassir ◽  
Mohammed Bahir ◽  
Driss Ouazar ◽  
Abdelghani Chehbouni ◽  
Paula M. Carreira

AbstractThe city of Essaouira is located along the north-west coast of Morocco, where groundwater is the main source of drinking, domestic and agricultural water. In recent decades, the salinity of groundwater has increased, which is why geochemical techniques and environmental isotopes have been used to determine the main sources of groundwater recharge and salinization. The hydrochemical study shows that for the years 1995, 2007, 2016 and 2019, the chemical composition of groundwater in the study area consists of HCO3–Ca–Mg, Cl–Ca–Mg, SO4–Ca and Cl–Na chemical facies. The results show that from 1995 to 2019, electrical conductivity increased and that could be explained by a decrease in annual rainfall in relation to climate change and water–rock interaction processes. Geochemical and environmental isotope data show that the main geochemical mechanisms controlling the hydrochemical evolution of groundwater in the Cenomanian–Turonian aquifer are the water–rock interaction and the cation exchange process. The diagram of δ2H = 8 * δ18O + 10 shows that the isotopic contents are close or above to the Global Meteoric Water Line, which suggests that the aquifer is recharged by precipitation of Atlantic origin. In conclusion, groundwater withdrawal should be well controlled to prevent groundwater salinization and further intrusion of seawater due to the lack of annual groundwater recharge in the Essaouira region.


2001 ◽  
Vol 172 (5) ◽  
pp. 523-531 ◽  
Author(s):  
Jean-Louis Rajot

Abstract To assess the mass budget of aeolian sediments transported by wind (erosion vs. deposition) at the scale of village land units (25 kmX25 km), measurements were carried out during 3 years (from 1996 to 1998) in a cultivated field and in a fallow area simultaneously. These were located in the Sahelian zone of Niger with an average annual rainfall of 560 mm. The vertical upward fluxes of particles <20 mu m exported from the study area were estimated from the horizontal sediment fluxes measured using BSNE sand catchers. This mass of exported dust was compared with the vertical downward fluxes of particles of the same size range (<20 mu m) measured using passive CAPYR collectors. Values of deposition recorded in the field and in the fallow were similar. In the field, wind erosion reached its maximum in May and June when the vegetation cover was minimal. In the fallow area, wind erosion was always very low in comparison with the field. It occurred during the strongest storms when the grass cover was minimal. Nevertheless, the net balance between deposition and erosion was highly positive in the fallow areas. These results have been extrapolated at the scale of the village land units based on the current land use. At this scale, the balance was positive for the arable land, indicating a net deposition of aeolian sediments of +0.36 t ha (super -1) yr (super -1) . However, the complete disappearance of fallow land would result in a balanced budget for the arable land.


2021 ◽  
Author(s):  
Wanderson Luiz-Silva ◽  
Pedro Regoto ◽  
Camila Ferreira de Vasconcellos ◽  
Felipe Bevilaqua Foldes Guimarães ◽  
Katia Cristina Garcia

<p>This research aims to support studies related to the adaptation capacity of the Amazon region to climate change. The Belo Monte Hydroelectric Power Plant (HPP) is in the Xingu River basin, in eastern Amazonia. Deforestation coupled with changes in water bodies that occurred in the drainage area of Belo Monte HPP over the past few decades can significantly influence the hydroclimatic features and, consequently, ecosystems and energy generation in the region. In this context, we analyze the climatology and trends of climate extremes in this area. The climate information comes from daily data in grid points of 0.25° x 0.25° for the period 1980-2013, available in http://careyking.com/data-downloads/. A set of 17 climate extremes indices based on daily data of maximum temperature (TX), minimum temperature (TN), and precipitation (PRCP) was calculated through the RClimDex software, recommended by the Expert Team on Climate Change Detection and Indices (ETCCDI). The Mann-Kendall and the Sen’s Curvature tests are used to assess the statistical significance and the magnitude of the trends, respectively. The drainage area of the Belo Monte HPP is dominated by two climatic types: an equatorial climate in the north-central portion of the basin, with high temperatures and little variation throughout the year (22°C to 32°C), in addition to more frequent precipitation; and a tropical climate in the south-central sector, which experiences slightly more pronounced temperature variations throughout the year (20°C to 33°C) and presents a more defined wet and dry periods. The south-central portion of the basin exhibits the highest temperature extremes, with the highest TX and the lowest TN of the year occurring in this area, both due to the predominant days of clear skies in the austral winter, as to the advance of intense masses of polar air at this period. The diurnal temperature range is lower in the north-central sector when compared to that in the south-central region since the first has greater cloud cover and a higher frequency of precipitation. The largest annual rainfall volumes are concentrated at the north and west sides (more than 1,800 mm) and the precipitation extremes are heterogeneous across the basin. The maximum number of consecutive dry days increases from the north (10 to 20 days) to the south (90 to 100 days). The annual frequency of warm days and nights is increasing significantly in a large part of the basin with a magnitude ranging predominantly from +7 to +19 days/decade. The annual rainfall shows a predominant elevation sign of up to +200 mm/decade only in the northern part of the basin, while the remainder shows a reduction of up to -100 mm/decade. The duration of drought periods increases in the south-central sector of the basin, reaching up to +13 days/decade in some areas. The results of this study will be used in the future as an important input, together with exposure, sensibility, and local adaptation capacity, to design adaptation strategies that are more consistent with local reality and to the needs of local communities.</p>


2021 ◽  
Author(s):  
Luis E. Pineda ◽  
Juan Changoluisa ◽  
Ángel G. Muñoz

<p>In January 2016, a high precipitation event (HPE) affected the northern coast of Ecuador leading to devastating flooding in the Esmeraldas’ river basin. The HPE appeared in the aftermath of the 2015/2016 El Niño as an early onset of heavy rainfalls otherwise expected in the core rainy season (Mar-Apr). Using gauge data, satellite imagery and reanalysis we investigate the daily and ‘weather-within-climate’ characteristics of the HPE and its accompanying atmospheric conditions. The convective storms developed into a mesoscale convective complex (MCC) during nighttime on 24<sup>th</sup> January. The scale size of the heavy rainfall system was about 250 km with a lifecycle lasting 16 hours for the complete storm with 6 hours of convective showers contributing to the HPE. The genesis of the MCC was related to above-normal moisture and orographic lifting driving convective updrafts; the north-south mountain barrier acted as both a channel boosting upslope flow when it moves over hillslopes; and, as a heavy-rain divide for inner valleys. The above normal moisture conditions were favored by cross-time-scale interactions involving the very strong El Niño 2015/2016 event, an unusually persistent Madden–Julian oscillation (MJO) in phases 3 and 6, remotely forced by tropical synoptic scale disturbances. In the dissipation stage, a moderate low-level easterly shear with wind velocity of about 10 m/s moved away the unstable air and the convective pattern disappear on the shore of the Esmeraldas basin.</p><p> </p><p>We use ECMWF re-forecast from the Sub-seasonal to Seasonal (S2S) prediction project dataset and satellite observations to investigate the predictability of the HPE. Weekly ensemble-mean rainfall anomaly forecasts computed from raw (uncorrected) S2S reforecast initialized on 31st Dec 2015, 7th, 14th and 21st Jan 2016 are used to assess the occurrence of rainfall anomalies over the region. The reforecast represents consistently, over all lead times, the spatial pattern of the HPE. Also, the ensemble-mean forecast shows positive rainfall anomalies at times scales of 1-3 weeks (0-21 days) at nearly all initialization dates and lead times, predicting this way successfully the timing and amplitude of the highest HPE leading the 25th January flood.</p>


2017 ◽  
Vol 68 (8) ◽  
pp. 781
Author(s):  
R. A. Culvenor ◽  
M. R. Norton ◽  
J. De Faveri

Perennial grasses have production and environmental benefits in areas of southern Australia typified by the mixed farming zone of southern New South Wales (NSW). The perennial grass phalaris (Phalaris aquatica L.) is widely used in southern Australia; however, it would find more use in the mixed farming zone if its persistence in marginal rainfall areas (450–500 mm average annual rainfall) were improved. We evaluated a range of germplasm (n = 29) including wild accessions, lines bred from these, and existing cultivars for persistence and production at three sites in a summer-dry area of southern NSW with 430–460-mm average annual rainfall. Two sites were used over 4 years and the third site over 5 years. Summer dormancy, maturity time and seedling growth were also assessed. Analysis of genotype × environment interaction employing factor analytic models and accounting for spatial and temporal correlations indicated that changes in persistence occurred mainly over time rather than between sites. Ranking changes occurred in the dry establishment phase of the experiment and during a severe final summer drought, with few changes occurring in the intervening high-rainfall years. Lines that survived the establishment phase best had vigorous seedlings and earlier maturity, whereas those surviving the final summer best were earlier maturing and higher in summer dormancy with high winter-growth activity. Some later maturing lines within the higher summer dormancy group were less persistent. Some accessions from North Africa were the most persistent; also, populations bred from these and other more persistent accessions generally persisted and produced better than cultivars used presently. However, present cultivars were capable of high yield in the higher rainfall years. We suggest that persistence of higher summer dormancy cultivars over very dry years could be improved by selecting for earlier maturity time.


Sign in / Sign up

Export Citation Format

Share Document