scholarly journals Neonatal exposure to genistein ameliorates high-fat diet-induced non-alcoholic steatohepatitis in rats

2011 ◽  
Vol 106 (1) ◽  
pp. 105-113 ◽  
Author(s):  
Chengfei Huang ◽  
Xubai Qiao ◽  
Bing Dong

Non-alcoholic steatohepatitis (NASH) is becoming a prevalent disease in developing countries with no effective therapy. Isoflavones such as genistein have been shown to prevent NASH in a rat model, but the effects of neonatal exposure to genistein on lipid metabolism have been rarely studied. In the present study, three doses of genistein (30, 300 or 1200 μg/rat per d) were injected (subcutaneously) into neonatal male Sprague–Dawley rats at postnatal days 1–5. After weaning, these rats were allowed free access to a high-fat diet for 6 weeks. The results demonstrate that NASH was induced by high fat feeding in the control rats, whereas genistein-treated rats displayed smaller body weight, and lower hepatic inflammation and steatosis. The mid dose of genistein was most effective. Neonatal exposure to genistein also resulted in a lower incidence of apoptotic cells in the liver. Additionally, neonatal genistein-treated rats showed lower hepatic expression of fatty acid synthase and sterol regulatory element-binding protein-1, but higher expression of PPARα, indicative of lower rates of lipid synthesis and higher rates of β-oxidation. These results indicate that neonatal treatment with genistein has a prolonged effect on hepatic lipid metabolism that is maintained post-weaning, offering a potential approach for the prevention of hepatic steatosis and NASH.

Nutrients ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1631
Author(s):  
Hwan-Hee Jang ◽  
Ji Hyun Bae ◽  
Mi-Ju Kim ◽  
Mi Young Park ◽  
Haeng Ran Kim ◽  
...  

Estrogen deficiency is associated with obesity, dyslipidemia, and increased insulin resistance in postmenopausal women. An efficient therapeutic agent prevents or improves postmenopausal conditions induced by estrogen deficiency. Here, we investigated the effects of aqueous Agrimonia pilosa Ledeb. extract on glucose and lipid metabolism in ovariectomized rats fed a high-fat diet (HFD). Female Sprague-Dawley rats were sham-operated or ovariectomized, and 3 weeks later were assigned to the following groups: sham-operated + HFD (S); ovariectomized + HFD (OVX); and ovariectomized + HFD with 0.5% A. pilosa aqueous extract (OVX + 0.5A) groups. Ovariectomy significantly increased body weight and dietary intake relative to the S group. However, A. pilosa treatment did not significantly affect weight gain or dietary intake. Blood triacylglycerol, total cholesterol, and low-density lipoprotein cholesterol levels tended to decrease in the A. pilosa-supplemented group. Blood glucose levels were significantly lower in the OVX + 0.5A group than those in the OVX group. Blood adiponectin and insulin concentrations increased significantly after A. pilosa treatment in the ovariectomized group. A. pilosa supplementation tended to decrease liver weights and prevented lipid accumulation. These effects correlated with reduced hepatic expression of lipogenesis-related genes (fatty acid synthase, acetyl-coenzyme A carboxylase alpha, and 3-hydroxy-3-methylglutaryl-coenzyme A reductase). Therefore, A. pilosa may improve metabolic disorders in ovariectomized rats.


2018 ◽  
Vol 49 (5) ◽  
pp. 1870-1884 ◽  
Author(s):  
Chian-Jiun Liou ◽  
Ciao-Han Wei ◽  
Ya-Ling Chen ◽  
Ching-Yi Cheng ◽  
Chia-Ling Wang ◽  
...  

Background/Aims: Fisetin is a naturally abundant flavonoid isolated from various fruits and vegetables that was recently identified to have potential biological functions in improving allergic airway inflammation, as well as anti-oxidative and anti-tumor properties. Fisetin has also been demonstrated to have anti-obesity properties in mice. However, the effect of fisetin on nonalcoholic fatty liver disease (NAFLD) is still elusive. Thus, the present study evaluated whether fisetin improves hepatic steatosis in high-fat diet (HFD)-induced obese mice and regulates lipid metabolism of FL83B hepatocytes in vitro. Methods: NAFLD was induced by HFD in male C57BL/6 mice. The mice were then injected intraperitoneally with fisetin for 10 weeks. In another experiment, FL83B cells were challenged with oleic acid to induce lipid accumulation and treated with various concentrations of fisetin. Results: NAFLD mice treated with fisetin had decreased body weight and epididymal adipose tissue weight compared to NAFLD mice. Fisetin treatment also reduced liver lipid droplet and hepatocyte steatosis, alleviated serum free fatty acid, and leptin concentrations, significantly decreased fatty acid synthase, and significantly increased phosphorylation of AMPKα and the production of sirt-1 and carnitine palmitoyltransferase I in the liver tissue. In vitro, fisetin decreased lipid accumulation and increased lipolysis and β-oxidation in hepatocytes. Conclusion: This study suggests that fisetin is a potential novel treatment for alleviating hepatic lipid metabolism and improving NAFLD in mice via activation of the sirt1/AMPK and β-oxidation pathway.


Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1829 ◽  
Author(s):  
Lepore ◽  
Maggisano ◽  
Bulotta ◽  
Mignogna ◽  
Arcidiacono ◽  
...  

Oleacein is one of the most abundant polyphenolic compounds of olive oil, which has been shown to play a protective role against several metabolic abnormalities, including dyslipidemia, insulin resistance, and glucose intolerance. Herein, we investigated the effects of oleacein on certain markers of adipogenesis and insulin-resistance in vitro, in 3T3-L1 adipocytes, and in vivo in high-fat diet (HFD)-fed mice. During the differentiation process of 3T3-L1 preadipocytes into adipocytes, oleacein strongly inhibited lipid accumulation, and decreased protein levels of peroxisome proliferator-activated receptor gamma (PPARγ) and fatty acid synthase (FAS), while increasing Adiponectin levels. In vivo, treatment with oleacein of C57BL/6JOlaHsd mice fed with HFD for 5 and 13 weeks prevented the increase in adipocyte size and reduced the inflammatory infiltration of macrophages and lymphocytes in adipose tissue. These effects were accompanied by changes in the expression of adipose tissue-specific regulatory elements such as PPARγ, FAS, sterol regulatory element-binding transcription factor-1 (SREBP-1), and Adiponectin, while the expression of insulin-sensitive muscle/fat glucose transporter Glut-4 was restored in HFD-fed mice treated with oleacein. Collectively, our findings indicate that protection against HFD-induced adiposity by oleacein in mice is mediated by the modulation of regulators of adipogenesis. Protection against HFD-induced obesity is effective in improving peripheral insulin sensitivity.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Carla Sá ◽  
Ana Rita Oliveira ◽  
Cátia Machado ◽  
Marisa Azevedo ◽  
Cristina Pereira-Wilson

Disruptions in whole-body lipid metabolism can lead to the onset of several pathologies such as nonalcoholic fatty liver disease (NAFLD) and cardiovascular diseases (CVDs). The present study aimed at elucidating the molecular mechanisms behind the lipid-lowering effects of the flavone luteolin-7-glucoside (L7G) which we previously showed to improve plasma lipid profile in rats. L7G is abundant in plant foods of Mediterranean diet such as aromatic plants used as herbs. Results show that dietary supplementation with L7G for one week induced the expression of peroxisome proliferator-activated receptor-alpha (PPAR-α) and of its target gene carnitine palmitoyl transferase 1 (CPT-1) in rat liver. L7G showed a tendency to decrease the hepatic expression of sterol regulatory element-binding protein-1 (SREBP-1), without affecting fatty acid synthase (FAS) protein levels. Although SREBP-2 and LDLr mRNA levels did not change, the expression of HMG CoA reductase (HMGCR) was significantly repressed by L7G. L7G also inhibited this enzyme’sin vitroactivity in a dose dependent manner, but only at high and not physiologically relevant concentrations. These results add new evidence that the flavone luteolin-7-glucoside may help in preventing metabolic diseases and clarify the mechanisms underlying the beneficial health effects of diets rich in fruits and vegetables.


2013 ◽  
Vol 109 (9) ◽  
pp. 1590-1597 ◽  
Author(s):  
Min Young Um ◽  
Mi Kyeong Moon ◽  
Jiyun Ahn ◽  
Tae Youl Ha

Coumarin is a natural compound abundant in plant-based foods such as citrus fruits, tomatoes, vegetables and green tea. Although coumarin has been reported to exhibit anti-coagulant, anti-inflammation and cholesterol-lowering properties, the effect of coumarin on hepatic lipid metabolism remains unclear. In the present study, we evaluated the ability of coumarin to protect against hepatic steatosis associated with a high-fat diet (HFD) and investigated potential mechanisms underlying this effect. C57BL/6J mice were fed a normal diet, HFD and HFD containing 0·05 % courmarin for 8 weeks. The present results showed that coumarin reduced weight gain and abdominal fat mass in mice fed the HFD for 8 weeks (P< 0·05). Coumarin also significantly reduced the HFD-induced elevation in total cholesterol, apoB, leptin and insulin (P< 0·05). In the liver of HFD-fed mice, coumarin significantly reduced total lipids, TAG and cholesterol (38, 22 and 9 % reductions, respectively; P< 0·05), as well as lipid droplet number and size. Additionally, thiobarbituric acid-reactive substance levels, as an indicator of hepatic steatosis, were attenuated by coumarin (P< 0·05). Finally, coumarin suppressed the HFD-induced up-regulation in fatty acid synthase (FAS) activity, and the expression of sterol regulatory element-binding protein-1, FAS, acetyl-CoA carboxylase 1, PPARγ and CCAAT/enhancer-binding protein-α in the liver. Taken together, these results demonstrate that coumarin could prevent HFD-induced hepatic steatosis by regulating lipogenic gene expression, suggesting potential targets for preventing hepatic steatosis.


2014 ◽  
Vol 111 (12) ◽  
pp. 2112-2122 ◽  
Author(s):  
R. O. Benatti ◽  
A. M. Melo ◽  
F. O. Borges ◽  
L. M. Ignacio-Souza ◽  
L. A. P. Simino ◽  
...  

Maternal consumption of a high-fat diet (HFD) during pregnancy and lactation is closely related to hepatic lipid accumulation, insulin resistance and increased serum cytokine levels in offspring and into their adulthood. MicroRNA (miRNA) have been implicated in cholesterol biosynthesis and fatty acid metabolism. We evaluated the modulation of hepatic fatty acid synthesis (de novo), β-oxidation pathways, and miRNA-122 (miR-122) and miRNA-370 (miR-370) expression in recently weaned offspring (day 28) of mouse dams fed a HFD (HFD-O) or a standard chow (SC-O) during pregnancy and lactation. Compared with SC-O mice, HFD-O mice weighed more, had a larger adipose tissue mass and were more intolerant to glucose and insulin (P< 0·05). HFD-O mice also presented more levels of serum cholesterol, TAG, NEFA and hepatic IκB kinase and c-Jun N-terminal kinase phosphorylation compared with SC-O mice (P< 0·05). Protein levels of fatty acid synthase, acetyl-CoA carboxylase and 3-hydroxy-3-methylglutaryl-CoA reductase were similar in HFD-O and SC-O mice, whereas expression levels of SCD1 mRNA and protein were more abundant in HFD-O mice than in SC-O mice (P< 0·05). Interestingly, mRNA expression levels of the β-oxidation-related genes ACADVL and CPT1 were decreased in HFD-O mice (P< 0·05). Furthermore, the expression of miR-122 was reduced but that of miR-370 was increased in HFD-O mice compared with that in SC-O mice (P< 0·05). Changes in hepatic lipid metabolism were accompanied by increased mRNA content of AGPAT1 and TAG deposition in HFD-O mice (P< 0·05). Taken together, the present results strongly suggest that maternal consumption of a HFD affects the early lipid metabolism of offspring by modulating the expression of hepatic β-oxidation-related genes and miRNA that can contribute to metabolic disturbances in adult life.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1802 ◽  
Author(s):  
Young-Jin Seo ◽  
Kippeum Lee ◽  
Ji-Hyeon Song ◽  
Sungwoo Chei ◽  
Boo-Yong Lee

Obesity is caused by the expansion of white adipose tissue (WAT), which stores excess triacylglycerol (TG), this can lead to disorders including type 2 diabetes, atherosclerosis, metabolic diseases. Ishige okamurae extract (IOE) is prepared from a brown alga and has anti-oxidative properties. We investigated the detailed mechanisms of the anti-obesity activity of IOE. Treatment with IOE blocked lipid accumulation by reducing expression of key adipogenic transcription factors, such as CCAAT/enhancer-binding protein alpha (C/EBPα) and peroxisome proliferator-activated receptor gamma (PPARγ), in 3T3-L1 cells. Administration of IOE to high fat diet (HFD)-fed mice inhibited body and WAT mass gain, attenuated fasting hyperglycemia and dyslipidemia. The obesity suppression was associated with reductions in expression of adipogenic proteins, such as C/EBPα and PPARγ, increases in expression of lipolytic enzymes, such as adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in WAT of HFD-fed mice. In addition, IOE-treated mice had lower hepatic TG content, associated with lower protein expression of lipogenic genes, such as diglyceride acyltransferase 1 (DGAT1), sterol regulatory element-binding protein 1 (SREBP1), fatty acid synthase (FAS). IOE treatment also reduced serum free fatty acid concentration, probably through the upregulation of β-oxidation genes, suggested by increases in AMPKα and CPT1 expression in WAT and liver. In summary, IOE ameliorates HFD-induced obesity and its related metabolic disease, hepatic steatosis, by regulating multiple pathways.


Nutrients ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2475 ◽  
Author(s):  
Hyun Sook Lee ◽  
Su-Min Lim ◽  
Jae In Jung ◽  
So Mi Kim ◽  
Jae Kyoung Lee ◽  
...  

Gynostemma pentaphyllum is widely used in Asia as a herbal medicine to treat type 2 diabetes, dyslipidemia, and inflammation. Here, we investigated the anti-obesity effect and underlying mechanism of G. pentaphyllum extract (GPE) enriched in gypenoside L, gypenoside LI, and ginsenoside Rg3 and obtained using a novel extraction method. Five-week-old male C57BL/6N mice were fed a control diet (CD), high-fat diet (HFD), HFD + 100 mg/kg body weight (BW)/day GPE (GPE 100), HFD + 300 mg/kg BW/day GPE (GPE 300), or HFD + 30 mg/kg BW/day Orlistat (Orlistat 30) for 8 weeks. The HFD-fed mice showed significant increases in body weight, fat mass, white adipose tissue, and adipocyte hypertrophy compared to the CD group; but GPE inhibited those increases. GPE reduced serum levels of triglyceride, total cholesterol, and LDL-cholesterol, without affecting HDL-cholesterol. GPE significantly increased AMPK activation and suppressed adipogenesis by decreasing the mRNA expression of CCAAT/enhancer binding protein-α (C/EBPα), peroxisome proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein-1c (SREBP1c), PPARγ coactivator-1α, fatty acid synthase (FAS), adipocyte protein 2 (AP2), and sirtuin 1 (SIRT1) and by increasing that of carnitine palmitoyltransferase (CPT1) and hormone- sensitive lipase (HSL). This study demonstrated the ameliorative effect of GPE on obesity and elucidated the underlying molecular mechanism.


Antioxidants ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 33 ◽  
Author(s):  
Zaidatul Akmal Othman ◽  
Wan Syaheedah Wan Ghazali ◽  
Liza Noordin ◽  
Nurul Aiman Mohd. Yusof ◽  
Mahaneem Mohamed

This study was undertaken to determine the phenolic compounds and the anti-atherogenic effect of bee bread in high-fat diet (HFD)-induced obese rats. The presence of phenolic compounds in bee bread was determined by liquid chromatography–mass spectrometry. Thirty-two male Sprague Dawley rats were divided into four groups, (n = 8/group); i.e., Normal (N), HFD (high-fat diet), HFD + BB (high-fat diet and 0.5 g/kg/day bee bread), and HFD + O (high-fat diet and 10 mg/kg/day orlistat) groups. After 6 weeks of the experiment, rats were sacrificed. Five phenolic compounds were identified in bee bread; namely, caffeic acid, ferulic acid, kaempferol, apigenin, and isorhamnetin. Bee bread significantly reduced Lee obesity index and levels of total cholesterol (TC), low-density lipoprotein (LDL), fatty acid synthase (FAS) activity, atherogenic index, oxidised-LDL (oxLDL), and malondialdehyde (MDA), and significantly increased aortic antioxidant activities, such as those of superoxide dismutase (SOD) and glutathione peroxidase (GPx). Adipocyte sizes were found to be smaller in the HFD + BB group compared to the N group, and en face aortas showed an absence of atherosclerotic plaque in rats supplemented with bee bread. These changes might suggest an anti-atherogenic effect of bee bread in HFD-induced obese rats via its antioxidant and hypocholesterolaemic properties.


Nutrients ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 3035
Author(s):  
Jiyoung Moon ◽  
Min Jin Ha ◽  
Min-Jeong Shin ◽  
Oh Yoen Kim ◽  
Eun Hye Yoo ◽  
...  

Since arginase has been shown to compete with nitric oxide (NO) synthase, emerging evidence has reported that arginase inhibition improves obesity by increasing NO production. Semen cuscutae (SC), which is a well-known Chinese medicine, has multiple biological functions such as anti-oxidant function and immune regulation. In this study, we investigated whether the SC as a natural arginase inhibitor influences hepatic lipid abnormalities and whole-body adiposity in high-fat diet (HFD)-induced obese mice. The lipid accumulation was significantly reduced by SC treatment in oleic acid-induced hepatic steatosis in vitro. Additionally, SC supplementation substantially lowered HFD-induced increases in arginase activity and weights of liver and visceral fat tissue, while increasing hepatic NO. Furthermore, elevated mRNA expressions of sterol regulatory element-binding transcription factor 1 (SREBP-1c), fatty-acid synthase (FAS), peroxisome proliferator-activated receptor-gamma (PPAR-γ)1, and PPAR-γ2 in HFD-fed mice were significantly attenuated by SC supplementation. Taken together, SC, as a novel natural arginase inhibitor, showed anti-obesity properties by modulating hepatic arginase and NO production and metabolic pathways related to hepatic triglyceride (TG) metabolism.


Sign in / Sign up

Export Citation Format

Share Document