scholarly journals Dietary zinc addition influenced zinc and lipid deposition in the fore- and mid-intestine of juvenile yellow catfishPelteobagrus fulvidraco

2017 ◽  
Vol 118 (8) ◽  
pp. 570-579 ◽  
Author(s):  
Guang-Hui Chen ◽  
Christer Hogstrand ◽  
Zhi Luo ◽  
Dian-Guang Zhang ◽  
Shi-Cheng Ling ◽  
...  

AbstractThe present study explored the mechanisms of dietary Zn influencing Zn and lipid deposition in the fore- and mid- intestine in yellow catfishPelteobagrus fulvidraco, and investigated whether the mechanism was intestinal-region dependent. For this purpose, yellow catfish were fed three diets containing Zn levels of 8·83, 19·20 and 146·65 mg Zn/kg, respectively. Growth performance, intestinal TAG and Zn contents as well as activities and mRNA expression of enzymes and genes involved in Zn transport and lipid metabolism in the fore- and mid-intestine were analysed. Dietary Zn increased Zn accumulation as well as activities of Cu-, Zn-superoxide dismutase and ATPase in the fore- and mid-intestine. In the fore-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, metallothionein (MT) and metal response element-binding transcription factor-1 (MTF-1), but down-regulated mRNA levels of ZIP4 and ZIP5. In the mid-intestine, dietary Zn up-regulated mRNA levels of ZnT1, ZnT5, ZnT7, MT and MTF-1, but down-regulated mRNA levels of ZIP4 and ZIP5. Dietary Zn reduced TAG content, down-regulated activities of 6-phosphogluconate dehydrogenase (6PGD), glucose-6-phosphate dehydrogenase (G6PD), malic enzyme (ME) and fatty acid synthase (FAS) activities, and reduced mRNA levels of 6PGD, G6PD, FAS, PPARγand sterol-regulator element-binding protein (SREBP-1), but up-regulated mRNA levels of carnitine palmitoyltransferase IA, hormone-sensitive lipase (HSLa), adipose TAG lipase (ATGL) and PPARαin the fore-intestine. In the mid-intestine, dietary Zn reduced TAG content, activities of G6PD, ME, isocitrate dehydrogenase and FAS, down-regulated mRNA levels of 6PGD, G6PD, FAS, acetyl-CoA carboxylase a, PPARγand SREBP-1, but up-regulated mRNA expression of HSLa, ATGL and PPARγ. The reduction in TAG content following Zn addition was attributable to reduced lipogenesis and increased lipolysis, and similar regulatory mechanisms were observed between the fore- and mid-intestine.

2006 ◽  
Vol 3 (2) ◽  
pp. 135-140
Author(s):  
Lu Jian-Xiong ◽  
Chen Fen-Fen ◽  
Yang Gong-She

AbstractPrimary adipocytes from subcutaneous adipose tissue samples obtained from 7-day-old Yorkshire×Landrace crossbreed piglets were exposed to 0–400 nmol/l of insulin for 48 h. The accumulated triglyceride was measured through Oil Red O staining and the cumulative glycerol released was determined to assess lipolytic activity in adipocytes. Transcription levels of sterol regulatory element binding protein (SREBP)-1c, carbohydrate response element binding protein (ChREBP), acetyl-CoA carboxylase 1 (ACC1), fatty acid synthase (FAS), and hormone-sensitive lipase (HSL) were assessed using reverse transcriptase-polymerase chain reaction (RT-PCR). The results showed that ChREBP and ACC1 mRNA levels were not influenced by insulin alone under low glucose (5 nmol/l). FAS mRNA level was markedly stimulated by all doses of insulin except 200 nmol/l, and SREBP-1c mRNA level increased with 100–300 nmol/l insulin. High insulin doses (300 and 400 nmol/l) increased the HSL mRNA level as well as lipolytic activity.


2021 ◽  
Vol 22 (21) ◽  
pp. 12047
Author(s):  
Shu-Wei Chen ◽  
Wu-Hong Lv ◽  
Kun Wu ◽  
Guang-Hui Chen ◽  
Fang Chen ◽  
...  

Nano-sized zinc oxide (nano-ZnO) affects lipid deposition, but its absorption patterns and mechanisms affecting lipid metabolism are still unclear. This study was undertaken to investigate the molecular mechanism of nano-ZnO absorption and its effects on lipid metabolism in the intestinal tissues of a widely distributed freshwater teleost yellow catfish Pelteobagrus fulvidraco. We found that 100 mg/kg dietary nano-ZnO (H-Zn group) significantly increased intestinal Zn contents. The zip6 and zip10 mRNA expression levels were higher in the H-Zn group than those in the control (0 mg/kg nano-ZnO), and zip4 mRNA abundances were higher in the control than those in the L-Zn (50 mg/kg nano-ZnO) and H-Zn groups. Eps15, dynamin1, dynamin2, caveolin1, and caveolin2 mRNA expression levels tended to reduce with dietary nano-ZnO addition. Dietary nano-ZnO increased triglyceride (TG) content and the activities of the lipogenic enzymes glucose 6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6PGD), and isocitrate dehydrogenase (ICDH), upregulated the mRNA abundances of lipogenic genes 6pgd, fatty acid synthase (fas), and sterol regulatory element binding protein 1 (srebp1), and reduced the mRNA expression of farnesoid X receptor (fxr) and small heterodimer partner (shp). The SHP protein level in the H-Zn group was lower than that in the control and the L-Zn group markedly. Our in vitro study indicated that the intestinal epithelial cells (IECs) absorbed nano-ZnO via endocytosis, and nano-Zn-induced TG deposition and lipogenesis were partially attributable to the endocytosis of nano-ZnO in IECs. Mechanistically, nano-ZnO-induced TG deposition was closely related to the metal responsive transcription factor 1 (MTF-1)-SHP pathway. Thus, for the first time, we found that the lipogenesis effects of nano-ZnO probably depended on the key gene shp, which is potentially regulated by MTF1 and/or FXR. This novel signaling pathway of MTF-1 through SHP may be relevant to explain the toxic effects and lipotoxicity ascribed to dietary nano-ZnO addition.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 535
Author(s):  
Dian-Guang Zhang ◽  
Tao Zhao ◽  
Xiao-Jian Xu ◽  
Wu-Hong Lv ◽  
Zhi Luo

Selenium (Se) is an essential micro-mineral and plays important roles in antioxidant responses, and also influences lipid metabolism and selenoprotein expression in vertebrates, but the effects and mechanism remain unknown. The study was undertaken to decipher the insights into dietary Se influencing lipid metabolism and selenoprotein expression in the anterior and middle intestine (AI and MI) of yellow catfish Pelteobagrus fulvidraco. Yellow catfish (weight: 8.27 ± 0.03 g) were fed a 0.03- (M-Se), 0.25- (A-Se), or 6.39- (E-Se) mg Se/kg diet for 12 wk. AI and MI were analyzed for triglycerides (TGs) and Se concentrations, histochemistry and immunofluorescence, enzyme activities, and gene and protein levelsassociated with antioxidant responses, lipid metabolism, endoplasmic reticulum (ER) stress, and selenoproteome. Compared to the A-Se group, M-Se and E-Se diets significantly decreased weight gain (WG) and increased TGs concentration in the AI and MI. In the AI, compared with A-Se group, M-Se and E-Se diets significantly increased activities of fatty acid synthase, expression of lipogenic genes, and suppressed lipolysis. In the MI, compared to the A-Se group, M-Se and E-Se diets significantly increased activities of lipogenesis and expression of lipogenic genes. Compared with A-Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the AI and MI, and M-Se diet did not significantly reduce GPX activities in the AI and MI. Compared with the A- Se group, E-Se diet significantly increased glutathione peroxidase (GPX) activities in the plasma and liver, and M-Se diet significantly reduced GPX activities in the plasma and liver. Compared with the A-Se group, M-Se and E-Se groups also increased glucose-regulated protein 78 (GRP78, ER stress marker) protein expression of the intestine. Dietary Se supplementation also differentially influenced the expression of the 28 selenoproteins in the AI and MI, many of which possessed antioxidant characteristics. Compared with the A-Se group, the M-Se group significantly decreased mRNA levels of txnrd2 and txnrd3, but made no difference on mRNA levels of these seven GPX proteins in the MI. Moreover, we characterized sterol regulatory element binding protein 1c (SREBP1c) binding sites of three ER-resident proteins (selenom, selenon, and selenos) promoters, and found that Se positively controlled selenom, selenon, and selenos expression via SREBP1c binding to the selenom, selenon, and selenos promoter. Thus, dietary marginal and excess Se increased TGs deposition of yellow catfish P. fulvidraco, which might be mediated by ER-resident selenoproteins expression and ER stress.


2014 ◽  
Vol 112 (5) ◽  
pp. 698-708 ◽  
Author(s):  
Jia-Lang Zheng ◽  
Zhi Luo ◽  
Mei-Qing Zhuo ◽  
Ya-Xiong Pan ◽  
Yu-Feng Song ◽  
...  

Carnitine has been reported to improve growth performance and reduce body lipid content in fish. Thus, we hypothesised that carnitine supplementation can improve growth performance and reduce lipid content in the liver and muscle of yellow catfish (Pelteobagrus fulvidraco), a commonly cultured freshwater fish in inland China, and tested this hypothesis in the present study. Diets containing l-carnitine at three different concentrations of 47 mg/kg (control, without extra carnitine addition), 331 mg/kg (low carnitine) and 3495 mg/kg (high carnitine) diet were fed to yellow catfish for 8 weeks. The low-carnitine diet significantly improved weight gain (WG) and reduced the feed conversion ratio (FCR). In contrast, the high-carnitine diet did not affect WG and FCR. Compared with the control diet, the low-carnitine and high-carnitine diets increased lipid and carnitine contents in the liver and muscle. The increased lipid content in the liver could be attributed to the up-regulation of the mRNA levels of SREBP, PPARγ, fatty acid synthase (FAS) and ACCa and the increased activities of lipogenic enzymes (such as FAS, glucose-6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase and malic enzyme) and to the down-regulation of the mRNA levels of the lipolytic gene CPT1A. The increased lipid content in muscle could be attributed to the down-regulation of the mRNA levels of the lipolytic genes CPT1A and ATGL and the increased activity of lipoprotein lipase. In conclusion, in contrast to our hypothesis, dietary carnitine supplementation increased body lipid content in yellow catfish.


2020 ◽  
Vol 21 (5) ◽  
pp. 1615 ◽  
Author(s):  
Shi-Cheng Ling ◽  
Mei-Qin Zhuo ◽  
Dian-Guang Zhang ◽  
Heng-Yang Cui ◽  
Zhi Luo

The present study was conducted to explore the mechanism of nano-Zn absorption and its influence on lipid metabolism in the intestine of yellow catfish Pelteobagrus fulvidraco. Compared to ZnSO4, dietary nano-Zn addition increased the triglyceride (TG) content, enzymatic activities of malic enzyme (ME) and fatty acid synthase (FAS), and up-regulated mRNA levels of 6pgd, fas, acca, dgat1, pparγ, and fatp4. Using primary intestinal epithelial cells of yellow catfish, compared to the ZnSO4 group, nano-Zn incubation increased the contents of TG and free fatty acids (FFA), the activities of glucose-6-phosphate dehydrogenase (G6PD), 6-phosphogluconate dehydrogenase (6GPD), ME, and FAS, up-regulated mRNA levels of lipogenic genes (6pgd, g6pd, fas, dgat1, and pparγ), genes of lipid transport (fatp4 and ifabp), and Zn transport genes (znt5, znt7, mt, and mtf1), and increased the protein expression of fatty acid transport protein 4 (FATP4) and peroxisome proliferator activated receptor gamma (PPARγ). Further studies found that nano-Zn absorption was via the clathrin-dependent endocytic mechanism. PPARγ mediated the nano-Zn-induced increase in TG, and nano-Zn increased Zn accumulation and induced TG accumulation by activating the PPARγ pathway and up-regulating lipogenesis.


2013 ◽  
Vol 132-133 ◽  
pp. 173-181 ◽  
Author(s):  
Jia-Lang Zheng ◽  
Zhi Luo ◽  
Cai-Xia Liu ◽  
Qi-Liang Chen ◽  
Xiao-Ying Tan ◽  
...  

2020 ◽  
Vol 150 (7) ◽  
pp. 1790-1798 ◽  
Author(s):  
Tao Zhao ◽  
Shui-Bo Yang ◽  
Guang-Hui Chen ◽  
Yi-Huan Xu ◽  
Yi-Chuang Xu ◽  
...  

ABSTRACT Background Dietary carbohydrate affects intestinal glucose absorption and lipid deposition, but the underlying mechanisms are unknown. Objectives We used yellow catfish and their isolated intestinal epithelial cells (IECs) to test the hypothesis that sodium/glucose cotransporters (SGLTs) 1/2 and acetylated carbohydrate response element binding protein (ChREBP) mediated glucose-induced changes in glucose absorption and lipid metabolism. Methods Yellow catfish (mean ± SEM weight: 4.68 ± 0.02 g, 3 mo old, mixed sex) were fed diets containing 250 g carbohydrates/kg from glucose (G, control), corn starch (CS), sucrose (S), potato starch (PS), or dextrin (D) for 10 wk. IECs were isolated from different yellow catfish and incubated for 24 h in a control or glucose (15 mM) solution with or without a 2-h pretreatment with an inhibitor [sotagliflozin (LX-4211) or tubastatin A (TBSA)]. Human embryonic kidney cells (HEK293T cells) were transfected with a Flag-ChREBP plasmid to explore ChREBP acetylation. Triglyceride (TG) and glucose concentrations and enzymatic activities were measured in the intestine and IECs of yellow catfish. They also were subjected to immunofluorescence, immunoprecipitation, qPCR, and immunoblotting. Immunoblotting and immunoprecipitation were performed with HEK293T cells. Results The G group had greater intestine TGs (0.99- to 2.30-fold); activities of glucose 6-phospate dehydrogenase, 6-phosphogluconate dehydrogenase, and isocitrate dehydrogenase (0.12- to 2.10-fold); and expression of lipogenic genes (0.32- to 2.34-fold) than the CS, PS, and D groups. The G group had greater intestine sglt1/2 mRNA and protein expression than the CS, S and D groups (0.35- to 1.12-fold and 0.40- to 4.67-fold, respectively), but lower mRNA amounts of lipolytic genes (48.6%–65.8%) than the CS and PS groups. LX-4211 alleviated the glucose-induced increase in sglt1/2 mRNA (38.2%–47.4%) and SGLT1 protein (48.0%) expression, TGs (29.3%), and lipogenic enzyme activities (27.7%–42.1%) and gene expression (38.0%–55.5%) in the IECs. TBSA promoted the glucose-induced increase in TGs (11.3%), fatty acid synthase activity (32.6%), and lipogenic gene expression (21.6%–34.4%) in the IECs and acetylated ChREBP (10.5%) in HEK293T cells. Conclusions SGLT1/2 signaling and acetylated ChREBP mediated glucose-induced changes in glucose absorption and lipid metabolism in the intestine and IECs of yellow catfish.


2017 ◽  
Vol 118 (11) ◽  
pp. 881-888 ◽  
Author(s):  
Lin Lu ◽  
Meiling Wang ◽  
Xiudong Liao ◽  
Liyang Zhang ◽  
Xugang Luo

AbstractTwo experiments were designed to investigate the effects of Mn source and concentration on the mRNA expression and enzymatic activities of fatty acid synthase (FAS) and malic enzyme (ME) in cultured primary broiler hepatocytes. In Expt 1, primary broiler hepatocytes were treated with 0 (control), 0·25, 0·50 or 0·75 mmol/l of Mn as inorganic manganese chloride (MnCl2.4H2O) for 24 and 48 h. In Expt 2, primary broiler hepatocytes were incubated with 0 (control), 0·25 or 0·50 mmol/l of Mn as either manganese chloride or Mn–amino acid chelate for 48 h. The mRNA levels and activities of FAS and ME in the hepatocytes were measured in Expts 1 and 2. The results in Expt 1 showed that only at 48 h mRNA expression levels of FAS and ME in the hepatocytes decreased linearly (P<0·001) and quadratically (P<0·02) as supplemental Mn concentrations increased. In Expt 2, compared with the control, Mn supplementation reduced (P<0·01) the activities of FAS, mRNA expression levels of FAS and ME in the hepatocytes, and the efflux of lactic dehydrogenase to the medium. The supplemental Mn at 0·5 mmol/l showed a lower (P<0·03) ME mRNA expression level compared with the Mn group at 0·25 mmol/l. However, Mn source and the interaction between Mn source and concentration had no impacts (P>0·33) on any of the measured cellular parameters. The results suggested that Mn might reduce cell damage and regulate FAS and ME expression at a transcriptional level in primary cultured broiler hepatocytes.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 861
Author(s):  
Guang-Hui Chen ◽  
Tao Zhao ◽  
Xiao-Lei Wei ◽  
Dian-Guang Zhang ◽  
Mei-Qin Zhuo ◽  
...  

Excessive fat deposition in the hepatocytes, associated with excess dietary fat intake, was related to the occurrence of fatty livers in fish. miR-101b plays the important roles in controlling lipid metabolism, but the underlying mechanism at the post-transcriptional level remains unclear. The purpose of this study is to explore the roles and mechanism of miR-101b-mediating lipid deposition and metabolism in yellow catfish Pelteobagrus fulvidraco. We found that miR-101b directly targeted fatty acid translocase (cd36), caspase9 (casp9) and autophagy-related gene 4A (atg4a). Furthermore, using palmitic acid (PA) or oleic acid (OA) to incubate the primary hepatocytes of yellow catfish, we demonstrated that miR-101b inversely regulated cd36, casp9, and atg4a expression at the transcriptional level; the inhibition of miR-101b aggravated fatty acids (FAs, PA or OA)-induced lipid accumulation, indicating that miR-101b mediated FAs-induced variations of lipid metabolism in yellow catfish. Taken together, our study gave novel insight into the regulatory mechanism of lipid deposition and metabolism and might provide potential targets for the prevention and treatment of fatty livers in fish.


Sign in / Sign up

Export Citation Format

Share Document