Induced bolting and anthesis in sugar beet and the effect of selection of physiological types

1946 ◽  
Vol 36 (3) ◽  
pp. 167-183 ◽  
Author(s):  
G. D. H. Bell

1. The effect of low-temperature and continuous-light treatment of seedlings of certain sugar beet strains in the isolation of distinct physiological types is described. The progenies of individual plants and bulk samples of different anthesis dates show some difference in the proportions of early and late plants, when these progenies are similarly exposed to low temperatures and continuous light in the seedling.2. Different treatments of progenies in relation to light treatment in the seedling stage result in distinct behaviour with regard to anthesis date and the number of plants reaching the stage of anthesis.3. The comparative resistance to bolting from a field sowing of seed obtained from plants which ripened seed after continuous light treatment of the seedlings is noted. This was so in spite of the fact that only 66% of the plants had reached anthesis as a result of the treatment, and the seed was obtained from the most rapidly bolting plants.4. Light and low temperature exposure of seedlings is effective in two different strains for isolating bolting-resistant types as measured directly from the seed of these bolting-resistant plants and selected progenies from these plants. Differences in the field germination and establishment from very early sowings were discernible in the progenies.

2008 ◽  
Vol 66 (4) ◽  
pp. 848-852 ◽  
Author(s):  
Eliza Y.F. Sonoda ◽  
Diego B. Colugnati ◽  
Carla A. Scorza ◽  
Ricardo M. Arida ◽  
Aline P. Pansani ◽  
...  

Sudden unexpected death in epilepsy (SUDEP) is the commonest cause of seizure-related mortality in people with refractory epilepsy. Several risk factors for SUDEP are described; however, the importance of including low temperatures as risk factor for SUDEP was never explored. Based on this, the aim of this study was to evaluate the heart rate of rats with epilepsy during low temperature exposure. Our results showed that low temperature clearly increased the heart rate of rats with epilepsy. Taken together, we concluded that exposure to low temperatures could be considered important risk factors from cardiovascular abnormalities and hence sudden cardiac death in epilepsy.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254437
Author(s):  
Raeann Goering ◽  
Siri Larsen ◽  
Jia Tan ◽  
James Whelan ◽  
Irina Makarevitch

Maize is a cold sensitive crop that exhibits severe retardation of growth and development when exposed to cold spells during and right after germination, including the slowdown in development of new leaves and in formation of the photosynthetic apparatus. Improving cold tolerance in maize would allow early sowing to improve crop yield by prolonging a growing season and by decreasing the negative effects of summer drought, diseases, and pests. Two maize inbreds widely incorporated into American maize germplasm, B73 and Mo17, exhibit different levels of tolerance to low temperature exposure at seedling stage. In addition, thirty seven diverse inbred maize lines showed large variation for seedling response to low temperature exposure with lines with extremely low tolerance to seedling exposure to low temperatures falling into stiff stalk, non-stiff stalk, and tropical clades. We employed the maize intermated B73×Mo17 (IBM) recombinant inbred line population (IBM Syn4 RIL) to investigate the genetic architecture of cold stress tolerance at a young seedling stage and to identify quantitative trait loci (QTLs) controlling this variation. A panel of 97 recombinant inbred lines of IBM Syn4 were used to measure, and score based on several traits related to chlorophyll concentration, leaf color, and tissue damage. Our analysis resulted in detection of two QTLs with high additive impact, one on chromosome 1 (bin 1.02) and second on chromosome 5 (bin 5.05). Further investigation of the QTL regions using gene expression data provided a list of the candidate genes likely contributing to the variation in cold stress response. Among the genes located within QTL regions identified in this study and differentially expressed in response to low temperature exposure are the genes with putative functions related to auxin and gibberellin response, as well as general abiotic stress response, and genes coding for proteins with broad regulatory functions.


1970 ◽  
Vol 92 (3) ◽  
pp. 393-398 ◽  
Author(s):  
G. R. Ling ◽  
C. L. Tien

A quantitative picture of the effect of low-temperature exposure on the survival of living cells is presented through discussion of solutions to a differential equation relating the volume of intracellular water to the temperature, the cooling rate, and various cell parameters. It is found that for a given cell, a single parameter which depends on the cooling rate governs the behavior of the cell when it is exposed to low temperatures. The analysis develops relationships between solutions to the differential equation and the phenomena affecting cell survival, namely, intracellular freezing and cell dehydration. Theoretical predictions are found to agree well with existing experimental observations.


1991 ◽  
Vol 116 (3) ◽  
pp. 421-425 ◽  
Author(s):  
Regina R. Melton ◽  
Robert J. Dufault

`Sunny' tomato (Lycopersicon esculentum Mill.) seedlings were pretransplant nutritionally conditioned (PNC) in 1988 and 1989 with factorial combinations of N from 100 to 300 mg·liter-1 and P from 10 to 70 mg·liter-1. In 1988, all conditioned seedlings were exposed to 12 hours of 2C for eight consecutive nights before transplanting. In 1989, half of the conditioned plants were exposed to a low-temperature treatment of 8 days with 12-hour nights at 2C and 12-hour days in a warm greenhouse (19C/26C, night/day). In both years, as N PNC increased to 200 mg·liter-1, seedling growth increased. Increasing P PNC from 10 to 40 mg·liter-1 increased seedling growth, but only in 1988. In both years, P PNC did not affect yields. Low-temperature exposure in 1989 decreased seedling growth in comparison to those held in a warm greenhouse (19C/26C, day/night). In 1988, first harvest yields were not affected by N PNC; however, in 1989, as N increased to 200 mg·liter-1, early yields increased. In 1988, total yields increased wit h N PNC from 100 to 200 mg·liter-1 and in 1989 with N at 50 to 100 mg·liter-1 with no further increases from 100 to 200 mg·liter-1. Low-temperature exposure had no effect on earliness, yield, or quality. A PNC regime combining at least 200 mg N/liter and up to 10 mg P/liter should be used to nutritionally condition `Sunny' tomato seedlings to enhance yield.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yanling Zheng ◽  
Yongqiong Yang ◽  
Meng Wang ◽  
Shijun Hu ◽  
Jianrong Wu ◽  
...  

Abstract Background C. panzhihuaensis is more tolerant to freezing than C. bifida but the mechanisms underlying the different freezing tolerance are unclear. Photosynthesis is one of the most temperature-sensitive processes. Lipids play important roles in membrane structure, signal transduction and energy storage, which are closely related to the stress responses of plants. In this study, the chlorophyll fluorescence parameters and lipid profiles of the two species were characterized to explore the changes in photosynthetic activity and lipid metabolism following low-temperature exposure and subsequent recovery. Results Photosynthetic activity significantly decreased in C. bifida with the decrease of temperatures and reached zero after recovery. Photosynthetic activity, however, was little affected in C. panzhihuaensis. The lipid composition of C. bifida was more affected by cold and freezing treatments than C. panzhihuaensis. Compared with the control, the proportions of all the lipid categories recovered to the original level in C. panzhihuaensis, but the proportions of most lipid categories changed significantly in C. bifida after 3 d of recovery. In particular, the glycerophospholipids and prenol lipids degraded severely during the recovery period of C. bifida. Changes in acyl chain length and double bond index (DBI) occurred in more lipid classes immediately after low-temperature exposure in C. panzhihuaensis compare with those in C. bifida. DBI of the total main membrane lipids of C. panzhihuaensis was significantly higher than that of C. bifida following all temperature treatments. Conclusions The results of chlorophyll fluorescence parameters confirmed that the freezing tolerance of C. panzhihuaensis was greater than that of C. bifida. The lipid metabolism of the two species had differential responses to low temperatures. The homeostasis and plastic adjustment of lipid metabolism and the higher level of DBI of the main membrane lipids may contribute to the greater tolerance of C. panzhihuaensis to low temperatures.


Insects ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 609
Author(s):  
Jianghua Liao ◽  
Juan Liu ◽  
Zhijian Guan ◽  
Chao Li

The Colorado potato beetle is a serious pest of Solanaceae in China. In early summer, cold spells in later spring may occur for brief periods in the field environmental conditions, and temperatures often deviate far below the normal temperature for short periods, such as sudden short-term low temperature, may affect the development of Colorado potato beetle eggs. This paper studies the effects of low temperature stress at 8 °C for 0 d, 1 d, 3 d, 5 d, 7 d, and 10 d on the development of Colorado potato beetle eggs. Our results show that egg survival is significantly affected by short-term low temperature exposure. The percentage of eggs hatched is significantly affected by different treatment times (p = 0.000)—the percentage of eggs hatched decreases with increased treatment time, and Colorado potato beetles will extend the wintering time of their soil to resist the effects of lower temperatures. Thus, exposure of Colorado potato beetles to a short-term low temperature affects their emergence and population growth; this study could provide information for the occurrence, monitoring, and early warning of Colorado potato beetle during short-term temperature.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012049
Author(s):  
A V Pushkarev ◽  
N A Andreev

Abstract The article presents the results of a study of low-temperature exposure on animal biological tissue using the novel prototype of a liquid nitrogen cryoapplicator. The data obtained are compared with the cryoapplicator characteristics cooled by nitrogen dioxide that are currently used for the atrial fibrillation treatment. Data analysis confirmed the liquid nitrogen cryoapplicators effectiveness and made it possible to highlight their advantages.


Sign in / Sign up

Export Citation Format

Share Document