Distribution of iron, manganese and phosphorus in the paddy soil profile

1960 ◽  
Vol 54 (3) ◽  
pp. 318-320 ◽  
Author(s):  
M. A. Islam ◽  
A. A. Choudhury

Soils collected from paddy fields were kept in a waterlogged condition in glass cylinders with and without drainage. After about 2 months of waterlogging soil samples were collected from each cm. depths of the cylinders, both from the bright and dark sides of the cylinders. The soil samples were analysed for iron, manganese and phosphorus. At the beginning these elements were uniformly distributed throughout the entire soil depth, but as a result of waterlogging a distribution pattern developed. More of these elements concentrated on the surface and illuminated sides of the cylinders. It is assumed that such a phenomenon also occurs in the paddy field. These elements by concentrating on the soil surface limit the feeding zones to the top 3–5 cm. of the soil.

2019 ◽  
Vol 886 ◽  
pp. 3-7 ◽  
Author(s):  
Wutthikrai Kulsawat ◽  
Boonsom Porntepkasemsan ◽  
Phatchada Nochit

Paddy residues are the most generous agricultural biomass from the paddy cultivation, Paddy residues practices include crop residue amendment and in-situ burning. It indicated that residue amendment increased the organic carbon and nutrient contents in soil, However, an open residue burning is still a common practice in Thailand despite of strict law enforcements and proper education to farmers about its implications on soil, human and animal health The present study determined how residues management practices: residue amendment and stubble burning, influence the soil organic carbon by determining δ13C in paddy soil profile. The 30 cm depth soil samples from the naturally straw amendment and stubble burning paddy fields were collected in Chiang Khwan district, Roi-et province during 2017. The δ13C values with soil depth showed that residue management practices produce statistical differences in both soils. The δ13C values of soil samples from amendment and burning sites ranged from-23.19‰ to-17.98‰ and-24.79‰ to-19.28‰, respectively. Carbon isotopes differentiate clearly between amendment site (more positive values) and burning site (more negative values). The results from this study were in accordance with literatures which reported that the δ13C distribution in the soil profile can be applied to study in SOC dynamics as a result of different paddy residue management practices (amendment or burning). Further research is needed to confirm the validity of the stable carbon isotope technique in this type of studies.


2019 ◽  
Vol 11 (14) ◽  
pp. 14862-14869 ◽  
Author(s):  
Sharada Jagannath Ghadage ◽  
Vaneeta Chandrashekhar Karande

The distribution pattern of blue-green algae was studied from paddy fields of Patan and Karad tehsils in relation to physico-chemical properties of soil, viz., pH, electrical conductivity, organic carbon %, available N, P, and K.  Paddy field soil samples of 38 localities from Patan and 28 localities from Karad were analysed.  One-hundred-and-thirty-seven species belonging to 35 genera of 10 families from three orders were encountered from paddy field soils of both the tehsils.  Out of 66 soil samples 93.65% samples showed occurrence of unicellular, heterocystous and non heterocystous forms while 6.34% soil samples showed only non heterocystous forms.  Anabaena and Oscillatoria were found to be of common occurrence.  Significant variation was not observed in distribution pattern of blue-green algal forms in relation to physico-chemical properties during successive surveys.


2018 ◽  
Vol 42 (1) ◽  
pp. 11-23
Author(s):  
Mohammad Asadul Haque

The spatial variability of salt accumulation through the soil profile was studied at Latachapali union of Kalapara upazila, Patuakhali district, Bangladesh. The soil samples were collected from 30 locations covering six villages of the union: Kuakata, Malapara, Fashipara, Khajura, Mothaopara and Tajepara. Five locations were randomly selected from each village. From each location soil samples were collected from three soil depths at 0-2 cm, 2.1-4 cm and 4.1-6 cm. Electrical conductivity of top 0-2 cm soil depth was 20.49 dS/m, in 2.1-4 cm soil depth was 7.14 dS/m and in 4.1-6 cm soil depth 4.15 dS/m. The study soils were strongly acidic having pH value 4.73, 4.99 and 5.20 in 0-2, 2.1-4 and 4.1-6 cm soil depth, respectively. The highest of 8.8 Na:K ratio was found in 0-2 cm soil depth. The Na:K ratio gradually decreased with the increase of soil depth, having 6.59 in 2.1-4 cm and 5.42. in 4.1-6 cm soil depth. The results clearly reveal that the top soil is very much sensitive to salt stress. Based on the electrical conductivity and Na:K ratio the Fashipara, Kuakata and Tajepara village were found seriously affected by salinity.Journal of Bangladesh Academy of Sciences, Vol. 42, No. 1, 11-23, 2018


Jurnal Solum ◽  
2007 ◽  
Vol 4 (1) ◽  
pp. 5
Author(s):  
Syafrimen Yasin ◽  
Gusnidar Gusnidar ◽  
Dedy Iskandar

A research conducted in Sungai Rumbai, Dharmasraya Regency and in Soil Laboratory Andalas university was aimed to evaluate soil fertility status on the depth below 0-20 cm from several land use types , especially under Mixed Garden and annual cultivated dryland soil.  Soil samples were taken on Ultisol at 0-8% slope (late-waving soil surface).  Land use types evaluated were forest, annual cultivated dryland, bush land, rangeland covered by Imperata cylindrica and mixed garden.  Composite soil samples for soil chemical analysis were taken on the 0-20 cm soil depth with four replications, and 5 drillings for each replication.  Undisturbed soil samples by using sample ring were used to analyze sol bulk volume.  The data resulted were compared to the criteria and were statistically tested using Analysis of Variance and then were continued by LSD at 5% level.  From the results of analyses could be concluded that land use  for mixed garden had the higher Organic Carbon (OC) content and the lower bulk volume (BV) than those for annual cultivated dryland soil.Key Words: Degradasi Lahan, Kebun Campuran, Tegalan


Weed Science ◽  
1976 ◽  
Vol 24 (5) ◽  
pp. 461-466 ◽  
Author(s):  
R. G. Wilson ◽  
H. H. Cheng

The fate of 2,4-D [(2,4-dichlorophenoxy)acetic acid] in the soil under winter wheat (Triticum aestivumL. ‘Nugaines’) and fallow cropping schemes was studied under the field conditions of eastern Washington in 1973 and 1974 using formulated dimethylamine salt and isooctyl ester of 2,4-D. Soil samples taken 1 hour after herbicide application showed that amine-treated plots retained considerably more applied 2,4-D than ester-treated plots. The rapidity of 2,4-D breakdown decreased gradually with time, and at the end of 6 months, an average of 0.04 ppm of 2,4-D remained in the sampled soil profile regardless of formulation, application rate, or cropping scheme. Loss of 2,4-D from the soil surface in runoff occurred when the plots were irrigated heavily one day after the herbicide application. The herbicide was also leached into the soil profile by both irrigation and natural precipitation. Herbicide concentrations in the sampled portion of the upper soil profile decreased during the summer and then increased slightly in the fall.


2008 ◽  
Vol 51 (2) ◽  
pp. 263-269 ◽  
Author(s):  
Silmara R. Bianchi ◽  
Mario Miyazawa ◽  
Edson L. de Oliveira ◽  
Marcos Antonio Pavan

The quantity of soil organic matter (SOM) was estimated through the determination of soil organic carbon (SOC) times a factor, which assumes that 58% of the SOM was formed by carbon. A number of soil samples with wide range of SOC content collected in the state of Paraná, Brazil were evaluated in the laboratory. SOC was measured by Walkley-Black method and the total SOM by loss on ignition. The SOC was positively correlated with SOM. The SOM/SOC ratio varied from 1.91 to 5.08 for the soils. It shows that Brazilian SOM has greater oxidation degree. Although, the SOM and SOC decreased with soil depth the SOM/SOC ratio increased. It showed that SOM in the subsoil contained more oxygen but less carbon than the SOM in the upper soil surface. The CEC/SOC also increased with depth indicating that the functional groups of the SOM increased per unity of carbon.


2019 ◽  
Vol 16 (1) ◽  
pp. 31 ◽  
Author(s):  
Miao Yu ◽  
Martine van der Ploeg ◽  
Esperanza Huerta Lwanga ◽  
Xiaomei Yang ◽  
Shaoliang Zhang ◽  
...  

Environmental contextMicroplastics found in soil pose several potential environmental risks. This study shows that microplastics on the soil surface can be ingested by earthworms and transported to the lower soil layers. In this way, microplastics may enter the food chain and find their way into groundwater systems, especially in cases where the water table is shallow. AbstractIn the current study, we examine how the activities of earthworms (Lumbricus terrestris) affect microplastic (MP) distribution and concentration in soil, with a focus on low density polyethylene (LDPE). We also want to determine if MPs can be flushed out with water. We used a laboratory sandy soil column (polyvinyl chloride tube) experimental set-up and tested five different treatments: (1) treatment with just soil (control) to check if the saturated conductivity (Ksat) could be impacted by MP, (2) treatment with MP, (3) treatment with MP and litter, (4) treatment with earthworms and litter as a second control for treatment 5 and (5) treatment with MPs, earthworms and litter. Each treatment consisted of eight replicates. For the treatments with MP, the concentration of MP added at the start of the experiment was 7% by weight (3.97g, polyethylene, 50% 1mm–250µm, 30% 250µm–150µm and 20% <150µm) based on 52.78g of dry litter from Populus nigra. In the treatments using earthworms, two adult earthworms, with an initial average weight of (7.14±0.26) g, were placed in each column. Results showed that LDPE particles could be introduced into the soil by the earthworms. MP particles were detected in each soil sample and within different soil layers for the earthworm treatments. Earthworms showed a tendency to transport the smaller MP particles and that the amount of MPs in size class <250μm increased in soil samples with increasing soil depth in comparison to the other size classes. After leaching, MPs were only detected in the leachate from the treatments with the earthworms, and the MP had similar size distributions as the soil samples in the 40–50cm layer of the treatment with MP, earthworms and litter. The results of this study clearly show that biogenic activities can mobilise MP transport from the surface into the soil and even be leached into drainage. It is highly likely that biogenic activities constitute a potential pathway for MPs to be transported into soil and groundwater.


1999 ◽  
Vol 4 (2) ◽  
pp. 65
Author(s):  
M. Ahmed ◽  
S.A. AI-Rawahy ◽  
M.S. AI-Kalbani ◽  
J.K. AI-Handaly

This paper reports the findings from leaching experiments conducted on some Omani soils. Seven samples from two locations in the Batinah coastal area of Oman were analyzed. Repacked soil columns of up to 30 cm in length were used in laboratory experiments to estimate the amount of water required for adequate leaching of salts from the soil profile. Two methods of leaching: continuous ponding and intermittent ponding were investigated. Results show that most of the salt (50-90%) is removed from the soil profile by the application of water equal in amount to the depth of soil to be leached. The results also show that intermittent ponding method of leaching is more efficient than the continuous ponding method of leaching if initial salinity level is high. Soil samples were also collected to find out the salinity status under drip irrigation. It clearly demonstrates that drip irrigation is very effective in removing salts from soil near the emitters although there is a marked accumulation of salts on the soil surface between emitters.


Author(s):  
Nguyen Phuc Khoa ◽  
Nguyen Thanh Dien ◽  
Nguyen Huu Ngu ◽  
Hoang Dinh Trung

Background: Several coastal regions in Vietnam have been suffered from salinity intrusion as a consequence of global climate change. However, there are limited studies on saline intrusion in Vietnam. This paper aimed to investigate the salinity intrusion of water and soil samples in paddy fields along Tam Giang lagoon, Thua Thien Hue province and clarify the factors affecting the salinity level. Methods: We measured the salinity concentrations (EC, Electrical conductivity) of water and soil samples in paddy fields at different distances (400, 600, 800, 1000 and 1200 m) from Tam Giang lagoon. The multiple regression analysis was performed to figure out the factors affecting the salinity concentrations. Result: The salinity concentrations of water were assessed as 48% high saline (10-25 dS m-1), 34% moderately saline (2-10 dS m-1), 2% slightly saline (0.7-2 dS m-1) and 15% non-saline ( less than 0.7 dS m-1). As for surface soil in paddy field, 14.3% moderately saline (4-8 dS m-1), 35.4% slightly saline (2-4 dS m-1) and 50.3% non-saline (0-2 dS m-1) were measured. A significantly positive correlation was found between salinity concentrations of water and soil (n = 175, r = 0.886, p less than 0.01). The distances from salinity sources, Tam Giang lagoon and shrimp pond, were major factors affecting the salinity concentrations. The paddy fields near Tam Giang lagoon and shrimp pond have higher salinity concentrations compared to those areas close to the residential area. The surface water in the paddy field within 1000 m from the salinity source was assessed as saline that might harm the paddy soil and rice production. The results of this study provide highly useful information for local policymakers and farmers about the status of salinity intrusion in paddy land.


Weed Science ◽  
1990 ◽  
Vol 38 (6) ◽  
pp. 589-597 ◽  
Author(s):  
Ronald E. Jones ◽  
Philip A. Banks ◽  
David E. Radcliffe

The influence of wheat straw cover, tillage, and irrigation on metribuzin and alachlor movement and dissipation in an Appling coarse sandy loam (Typic Hapludult) and the influence of soil depth on their rate of dissipation were measured in field and laboratory experiments conducted in 1987 and 1988. Overall, metribuzin moved more than alachlor in both years. Alachlor movement was greater in tilled plots compared to no-till plots in 1988. Metribuzin movement was greater in no-till plots in 1987. Straw cover had little effect on the movement of alachlor, but the presence of 2800 kg ha−1of straw on the soil surface increased the downward movement of metribuzin in both years compared to soil with no straw cover. The rate of alachlor dissipation in the soil was faster in straw-covered and no-till plots in both years and in the high irrigation level in 1988. Metribuzin dissipation was not affected by any of these factors. Alachlor rate of dissipation did not differ among depths in the field; however, dissipation differed in the laboratory in the order 0 to 20 cm > 20 to 45 cm = 45 to 68 cm. Metribuzin dissipated faster at the 8-cm depth in the field compared to the 58-cm depth. In the laboratory, metribuzin dissipation rates followed the order 0 to 20 cm > 20 to 45 cm > 45 to 68 cm. At the greatest depth, the dissipation of metribuzin was faster in the field than in the laboratory.


Sign in / Sign up

Export Citation Format

Share Document