Effects of rapeseed and soybean oil dietary supplementation on bovine fat metabolism, fatty acid composition and cholesterol levels in milk

2013 ◽  
Vol 81 (1) ◽  
pp. 120-128 ◽  
Author(s):  
Christian Altenhofer ◽  
Melanie Spornraft ◽  
Hermine Kienberger ◽  
Michael Rychlik ◽  
Julia Herrmann ◽  
...  

The main goal of this experiment was to study the effect of milk fat depression, induced by supplementing diet with plant oils, on the bovine fat metabolism, with special interest in cholesterol levels. For this purpose 39 cows were divided in three groups and fed different rations: a control group (C) without any oil supplementation and two groups with soybean oil (SO) or rapeseed oil (RO) added to the partial mixed ration (PMR). A decrease in milk fat percentage was observed in both oil feedings with a higher decrease of −1·14 % with SO than RO with −0·98 % compared with the physiological (−0·15 %) decline in the C group. There was no significant change in protein and lactose yield. The daily milk cholesterol yield was lower in both oil rations than in control ration, while the blood cholesterol level showed an opposite variation. The milk fatty acid pattern showed a highly significant decrease of over 10 % in the amount of saturated fatty acids (SFA) in both oil feedings and a highly significant increase in mono (MUFA) and poly (PUFA) unsaturated fatty acids, conjugated linoleic acids (CLA) included. The results of this experiment suggest that the feeding of oil supplements has a high impact on milk fat composition and its significance for human health, by decreasing fats with a potentially negative effect (SFA and cholesterol) while simultaneously increasing others with positive (MUFA, PUFA, CLA).

Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3122
Author(s):  
Jalil Ghassemi Nejad ◽  
Bae-Hun Lee ◽  
Ji-Yung Kim ◽  
Kyung-Il Sung ◽  
Hong-Gu Lee

The effects of grazing lactating cows in mountainous areas for 12 and 24 h compared with the confined indoor system were evaluated by examining the overall milk fatty acid and cortisol. Twenty-one dairy cows were allocated to three treatment groups: (1) control (confined management system in a free-stall barn; TMR based), (2) grazing for 12 h (12hG; TMR plus grazing pasture), and (3) grazing for 24 h (24hG; pasture-based feeding system). Dry matter intake was higher in the control and 12hG groups than in the 24hG group. The yields of total milk and the 3.5% fat-corrected milk were the lowest in the 24hG group. Milk fat was the highest in the 24hG group and higher in 12hG compared with the control group. Milk protein and lactose levels were the highest in the 12hG group. The highest somatic cell count was observed in the 24hG group. The saturated fatty acid levels were higher in the control group compared with the 12hG and 24hG groups. There was no difference in overall mono-unsaturated fatty acids between 12hG and 24hG groups. Poly-unsaturated fatty acids were higher in the 12hG group compared with the control and 24hG groups. There was no difference in omega-6 (ω-6) fatty acids among the groups, and omega-3 fatty acids were higher in the 12hG group than in the control group. Milk cortisol was the highest in the 24hG group and higher in the control group compared with the 12hG group. Taken together, grazing for 12 h is advisable for farms that have access to mountainous areas to improve the milk fatty acid profile and decrease the stress levels in high-yielding Holstein lactating cows.


PLoS ONE ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. e0246357
Author(s):  
Mauricio X. S. Oliveira ◽  
Andre S. V. Palma ◽  
Barbara R. Reis ◽  
Camila S. R. Franco ◽  
Alessandra P. S. Marconi ◽  
...  

Fluid milk and its derivatives are important dietary ingredients that contribute to daily nutrient intake of the modern Homo sapiens. To produce milk that is healthier for human consumption, the present study evaluated the effect of adding soybean oil and linseed oil in the diet of lactating cows. The fatty acid profile of milk, milk composition, and the blood parameters of cows were evaluated. Eighteen Holstein cows were distributed in a replicated Latin square design and distributed according to the following treatments: 1) Control (CC): traditional dairy cow diet, without addition of oil; 2) Soybean oil (SO): 2.5% addition of soybean oil to the traditional diet, as a source of omega-6; 3) Linseed oil (LO): 2.5% addition of linseed oil in the diet as a source of omega-3. Milk production was not affected, but oil supplementation decreased feed intake by 1.93 kg/cow/day. The milk fat percentage was significantly lower when cows were supplemented with vegetable oil (3.37, 2.75 and 2.89% for CC, SO and LO, respectively). However, both soybean and linseed oils decreased the concentration of saturated fatty acids (66.89, 56.52 and 56.60 g/100g for CC, SO and LO respectively), increased the amount of unsaturated fatty acids in milk (33.05, 43.39, and 43.35 g/100g for CC, SO and LO respectively) and decreased the ratio between saturated/unsaturated fatty acids (2.12, 1.34, and 1.36 for CC, SO and LO respectively). Furthermore, SO and LO increased significantly the concentration of monounsaturated fatty acids (29.58, 39.55 and 39.47 g/100g for CC, SO and LO respectively), though it did not significantly alter the level of polyunsaturated fatty acids in milk fat (3.57, 3.93 and 3.98 g/100g for CC, SO and LO respectively). Supplementation with LO enhanced the concentration of omega-3 fatty acids on milk (0.32, 0.36, and 1.02 for CC, SO and LO respectively). Blood variables aspartate aminotransferase, gamma glutamyl transferase, urea, albumin, creatinine and total proteins were not altered. On the other hand, total cholesterol, HDL and LDL were greater in the group supplemented with vegetable oils. Supplementation with vegetable oils reduced the dry matter intake of cows, the fat content of milk, and improved saturated/unsaturated fatty acid ratio of milk fat. Compared to the SO treatment, animals fed LO produced milk with greater content of omega-3, and a more desirable omega-6/omega-3 ratio on a human nutrition perspective. Thus, the inclusion of SO and LO in the diet of lactating dairy cows makes the milk fatty acid profile nutritionally healthier for the human consumption.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroyuki Takeuchi ◽  
Michihiro Sugano

Transfatty acid (TFA) from partially hydrogenated oil is regarded as the worst dietary fatty acid per gram due to its role in coronary heart disease. TFA consumption is decreasing worldwide, but some but not all observational studies indicate that TFA intake has little relevance to serum cholesterol levels in populations with low TFA intake (<1%E[percentage of total energy intake], <approximately 2 g/day). Few intervention trials examined the effect of TFAs on blood cholesterol at relatively low levels (<2%E); no definite evidence is available on the tolerable upper level of the intake. A series of our intervention studies in Japanese suggested that an industrial TFA intake at <1%Edoes not influence the serum cholesterol level. To establish allowable level, we must consider not only the dietary level of TFAs, but also the composition of dietary fats simultaneously consumed, that is, saturated and unsaturated fatty acids. These fatty acids strengthen or counteract the adverse effect of TFAs on serum cholesterol levels. In this review we describe the complex situation of the cardiovascular effects of industrial TFAs. The relationship between dietary industrial TFAs and concentration of plasma cholesterol should be evaluated from the viewpoint of dietary patterns rather than TFAs alone. 


2012 ◽  
Vol 81 (2) ◽  
pp. 159-162 ◽  
Author(s):  
Petra Hudečková ◽  
Lucie Rusníková ◽  
Eva Straková ◽  
Pavel Suchý ◽  
Petr Marada ◽  
...  

The aim of this study was to compare the effect of two different types of oils in diet on the fatty acid profile in the eggs of layers and to include a particular type of oil as a supplement of feeding mixtures for layers in order to support the development of functional foodstuffs. Thirty layers fed a diet containing soybean oil constituted the control group (soybean oil is the most frequently used oil added to feeding mixtures). In the experimental group (thirty layers), soybean oil was replaced with linseed oil at the same amount (3 kg of oil per 100 kg of feeding mixture). Feeding was provided ad libitum for all days of the month. After one month, egg yolks were analysed and the fatty acid profile was compared. Significant differences (P ≤ 0.05) were found in the concentration of myristic acid that belongs to the group of saturated fatty acids. Eggs in the experimental group showed higher concentrations of myristic acid compared to the control group (0.20 g/100 g of fat and 0.18 g/100 g of fat, respectively). Highly significant differences (P ≤ 0.01) were found for heptadecanoic acid but the trend was opposite to that of myristic acid; concentrations of heptadecanoic acid in the experimental group were lower than those in the control group. Highly significant differences (P ≤ 0.01) were found for n-9 monounsaturated fatty acids where egg yolks in eggs from layers fed linseed oil contained higher concentrations of oleic acid, myristoleic acid, and palmitoleic acid. Lower concentrations of n-6 fatty acids (P ≤ 0.01) were found after the addition of linseed oil in eggs. Linseed oil showed a positive effect on n-3 fatty acids (α-linolenic acid), its concentration in the control and experimental group was 0.82 g/100 g of fat and 5.63 g/100 g of fat, respectively. The possibility of influencing the fatty acid profile in eggs is very important for the development of functional foods.


Author(s):  
Klára Novotná ◽  
Milena Fantová ◽  
Lenka Nohejlová ◽  
Markéta Borková ◽  
Luděk Stádník ◽  
...  

The aim of this study was to investigate the effect of two species of the microalgae on the milk yield, the basic composition and the fatty acid profile of goat milk, with focus on n‑3 fatty acids. Forty‑five White short‑haired goats were randomly allocated to three groups; the control group (C) with no supplementation microalgae to the diet. The first experimental group (Ch) was supplemented with Chlorella vulgaris and second experimental group (J) has been supplemented with Japonochytrium sp. The Japonochytrium supplementation negatively affected milk yield, but the amount of milk fat (+0.1 %; +0.45 %) and solids‑not‑fat (+0.27 %; +0.86 %) were higher than in group C and Ch. The amount of polyunsaturated (5.527 % ± 0.378) and saturated (71.560 % ± 0.861) fatty acids was also highest in group J. An increase of C20:4, C20:5 was detected in J and Ch, and the concentration of C22:6 was highest in group J (+0.019 %; P < 0.001).


Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1256
Author(s):  
Senén De La Torre-Santos ◽  
Luis J. Royo ◽  
Adela Martínez-Fernández ◽  
Cristina Chocarro ◽  
Fernando Vicente

The optimization of milk production includes a rational use of forages, respect for the environment and offers the best quality to consumers. Milk production based on grass and forages produces healthier milk and it is widely spread throughout the Atlantic arc to maximize milk yield per hectare. However, the mode of offering the grass can have a major influence on milk composition. The aim of this study was to evaluate the effect of grass supply mode (grazing, zero-grazing or ensiling) on dairy cows’ performance, with particular reference to fatty acids and fat-soluble antioxidants concentration. A three by three Latin square experiment was performed with 18 dairy cows. Experimental treatments consisted of exclusive feeding with grass silage and zero-grazing, both offered ad libitum indoors, or grazing for 24 h. The results showed that grazing cows had a higher dry matter intake and greater milk yield than cows feeding on grass silage and zero-grazing, as well as higher concentrations of protein, lactose, nonfat-solids and urea in milk than housed cows. Milk fat from grazing cows had a higher proportion of unsaturated fatty acids than from cows feeding on grass silage and zero-grazing, with significant differences in the proportion of vaccenic and rumenic acids. The 18:1 trans-11 to 18:1 trans-10 ratio is proposed as biomarker to identify the milk produced from the management system of grazing cattle. Milk from grazing cows had a greater proportion of lutein than cows eating grass silage, with the zero-grazing system having intermediate values. In conclusion, the mode of grass supply affects fatty acid and antioxidant profiles of milk.


2020 ◽  
Vol 15 (11) ◽  
pp. 1934578X2097229
Author(s):  
Yu-Hsiang Lin ◽  
Chia-Jen Nien ◽  
Lih-Geeng Chen ◽  
Sheng-Yang Lee ◽  
Wei-Jen Chang ◽  
...  

Melanogenesis is a complex process that can lead to pigmentation defects. Various chemical skin-lightening products have been developed to treat pigmentation disorders. However, these chemical products can cause harmful adverse effects. Therefore, the development of safer, natural bleaching ingredients is a trend for sustainability. It has been reported that unsaturated fatty acids exhibit significant antimelanogenic effects. Sapindus mukorossi seed oils contain abundant unsaturated fatty acids; however, these have not yet been investigated for beneficial effects on skin tone evenness. In this study, we tested the possibility of using S. mukorossi oil for the treatment of hyperpigmentation in an in vitro model. Free fatty acid compositions and β-sitosterol were determined by gas chromatography-mass spectrometry and high-pressure liquid chromatography, respectively. The effect of S. mukorossi oil on melanoma B16F10 cell viability was detected using the 3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyl-tetrazolium bromide assay. The inhibitive effects of fatty acids and β-sitosterol in S. mukorossi oil on α-melanocyte-stimulating hormone (MSH)-induced melanogenesis was evaluated by detecting melanin formation and tyrosinase activity. Our results showed that S. mukorossi oil produced no significant cytotoxicity in B16F10 cells at various concentrations compared with the control group. The enhancement of melanin formation induced by α-MSH was reduced by S. mukorossi oil. We also found that the primary fatty acid contributing to the antimelanogenesis effect was eicosenoic acid. These results suggest that S. mukorossi seed oil can effectively inhibit melanogenesis and has the potential for future development as a de-hyperpigmentation product within a waste utilization context.


2004 ◽  
Vol 71 (4) ◽  
pp. 385-397 ◽  
Author(s):  
Paul R Shorten ◽  
Tony B Pleasants ◽  
Girish C Upreti

An increase in the proportion of unsaturated fatty acids in milk is considered desirable for human health. A prerequisite for the manipulation of milk fat composition is a co-ordinated understanding of the complex interactions in its biosynthesis. It has been suggested that an increase in the expression of mammary stearoyl-CoA-desaturase (SCD) would enrich mono-unsaturated fatty acids in milk, and therefore improve its nutritional properties. To investigate the potential effects of changes in expression of mammary enzymes and substrate availability on milk fat composition, we constructed, parameterized and evaluated a mechanistic mathematical model of fatty acid biosynthesis and milk-fat triglyceride assembly. The objective was to describe changes in the amount and composition of milk fat produced by bovine mammary cells due to changes in nutrition. Using the model we found that a 50% up-regulation in SCD activity increased the molar fraction of milk triglyceride 18[ratio ]1 from 0·30 to 0·33 and 16[ratio ]1 from 0·04 to 0·06. Up-regulation of SCD therefore did not appear to be the optimal method for increasing the content of unsaturated fatty acids in milk fat. The model was also used to determine the likely rate-limiting processes for the incorporation of unsaturated fatty acids into milk fat. Halving the concentration of glycerol 3-phosphate increased the molar fraction of milk triglyceride 18[ratio ]1 from 0·30 to 0·35 and decreased the molar fraction of milk triglyceride 16[ratio ]0 from 0·30 to 0·22. This achieved the desirable outcome of producing more unsaturated low-fat milk. Our model also predicted that a K232A mutation in the bovine mammary DGAT1 gene that is linked with an increase in milk fat yield would be consistent with a 120% increase in the DGAT acylation rate and also would be associated with a decrease in milk mono-unsaturated fatty acids.


2020 ◽  
Vol 21 (11) ◽  
pp. 4162
Author(s):  
Dongyang Wang ◽  
Zujing Chen ◽  
Xiaona Zhuang ◽  
Junyi Luo ◽  
Ting Chen ◽  
...  

Summer temperatures are generally high in Southern China, and cows are likely to suffer a heat stress reaction. Heat stress will have a negative impact on the performance of dairy cows; however, the mechanism by which high temperature affects lactation is not clear. CircRNA is a type of non-coding RNA discovered in recent years, which performs a crucial function in many biological activities. However, the effects of circRNA on lactation function of dairy cows under heat stress is unknown. The present study aimed to explore the expression levels of circRNA in the mammary gland tissue of cows under heat stress. Firstly, we collected blood and milk samples of summer and winter cows and evaluated lactation performance using serum indicators, milk production, and milk composition. Incorporating the calculation of the temperature and humidity index, we conformed the heat stress status of cows in summer. Heat stress increased the concentration of HSP70 and decreased the concentration of SOD and PRL. Heat stress not only reduced milk yield but also affected milk quality, with milk lactose and milk protein decreasing with increased temperature. The analysis of the fatty acid composition in summer milk found significantly reduced concentrations of unsaturated fatty acids, especially long-chain unsaturated fatty acids. Sequencing of the cow’s mammary gland transcriptome revealed that compared to the appropriate temperature (ST) group, the heat stress (HS) group had a total of 2204 upregulated and 3501 downregulated transcripts. GO enrichment and KEGG pathway analysis showed that these genes were mainly related to milk fat metabolism. In addition, 19 upregulated and 19 downregulated circRNA candidates were found in response to heat stress. We used Pearson’s test to establish the correlation of circRNA-mRNA and identified four pairs of circRNA-miRNA networks between four circRNAs, six miRNAs, and the CD36 gene. In this study, we revealed the possible role of circRNAs in lactation of dairy cows and identified that circRNA-miRNA-mRNA networks might exist in the cow’s mammary glands, providing valuable experience for dairy lactation and milk quality.


Sign in / Sign up

Export Citation Format

Share Document