Two-dimensional potential flow solutions with separation

2010 ◽  
Vol 657 ◽  
pp. 238-264 ◽  
Author(s):  
A. VERHOFF

A procedure for constructing two-dimensional incompressible potential flowfield solutions with separation and a recirculation region is presented. It naturally makes use of complex variable theory and other analysis techniques such as conformal mapping and the generalized Poisson integral formula. Flowfield determination is reduced to solution of a boundary value problem in various simple domains. The entire velocity field is described analytically; stream function and velocity potential contour maps are readily constructed. Example solutions are presented. Solutions for sharp leading edge airfoils at arbitrary angle of attack are completely determined, including the limiting angle of attack for upper-surface flow re-attachment. For other configurations (e.g. circular cylinder, backward-facing step) the analytical solution contains one or more free parameters, whose values may be inferred from boundary layer theory or experiment.

2015 ◽  
Vol 767 ◽  
pp. 782-810 ◽  
Author(s):  
D. J. Garmann ◽  
M. R. Visbal

AbstractA canonical study is developed to investigate the unsteady interactions of a streamwise-oriented vortex impinging upon a finite surface using high-fidelity simulation. As a model problem, an analytically defined vortex superimposed on a free stream is convected towards an aspect-ratio-six ($\mathit{AR}=6$) plate oriented at an angle of ${\it\alpha}=4^{\circ }$ and Reynolds number of $\mathit{Re}=20\,000$ in order to characterize the unsteady modes of interaction resulting from different spanwise positions of the incoming vortex. Outboard, tip-aligned and inboard positioning are shown to produce three distinct flow regimes: when the vortex is positioned outboard of, but in close proximity to, the wingtip, it pairs with the tip vortex to form a dipole that propels itself away from the plate through mutual induction, and also leads to an enhancement of the tip vortex. When the incoming vortex is aligned with the wingtip, the tip vortex is initially strengthened by the proximity of the incident vortex, but both structures attenuate into the wake as instabilities arise in the pair’s feeding sheets from the entrainment of opposite-signed vorticity into either structure. Finally, when the incident vortex is positioned inboard of the wingtip, the vortex bifurcates in the time-mean sense with portions convecting above and below the wing, and the tip vortex is mostly suppressed. The time-mean bifurcation is actually a result of an unsteady spiralling instability in the vortex core that reorients the vortex as it impacts the leading edge, pinches off, and alternately attaches to either side of the wing. The increased effective angle of attack inboard of impingement enhances the three-dimensional recirculation region created by the separated boundary layer off the leading edge which draws fluid from the incident vortex inboard and diminishes its impact on the outboard section of the wing. The slight but remaining downwash present outboard of impingement reduces the effective angle of attack in that region, resulting in a small separation bubble on either side of the wing in the time-mean solution, effectively unloading the tip outboard of impingement and suppressing the tip vortex. All incident vortex positions provide substantial increases in the wing’s lift-to-drag ratio; however, significant sustained rolling moments also result. As the vortex is brought inboard, the rolling moment diminishes and eventually switches sign as the reduced outboard loading balances the augmented sectional lift inboard of impingement.


1989 ◽  
Vol 206 ◽  
pp. 463-475 ◽  
Author(s):  
S. Murata ◽  
S. Tanaka

A method is presented for the numerical analysis of the aerodynamic characteristics of a two-dimensional single-surface porous sail. In this analysis the authors apply a series of Jacobi polynomials to express the pressure distribution and chordwise shape, considering carefully leading-edge conditions. It is found that the aero-dynamic stability of a sail increases with increasing porosity. The effects of porosity on the value of the life coefficient and the position of the centre of pressure are shown in diagrams as functions of angle of attack and of excess length of membrane over the chord length.


1993 ◽  
Vol 248 ◽  
pp. 1-26 ◽  
Author(s):  
Z. Rusak

Transonic potential flow around the leading edge of a thin two-dimensional general airfoil with a parabolic nose is analysed. Asymptotic expansions of the velocity potential function are constructed at a fixed transonic similarity parameter (K) in terms of the thickness ratio of the airfoil in an outer region around the airfoil and in an inner region near the nose. These expansions are matched asymptotically. The outer expansion consists of the transonic small-disturbance theory and it second-order problem, where the leading-edge singularity appears. The inner expansion accounts for the flow around the nose, where a stagnation point exists. Analytical expressions are given for the first terms of the inner and outer asymptotic expansions. A boundary value problem is formulated in the inner region for the solution of a uniform sonic flow about an infinite two-dimensional parabola at zero angle of attack, with a symmetric far-field approximation, and with no circulation around it. The numerical solution of the flow in the inner region results in the symmetric pressure distribution on the parabolic nose. Using the outer small-disturbance solution and the nose solution a uniformly valid pressure distribution on the entire airfoil surface can be derived. In the leading terms, the flow around the nose is symmetric and the stagnation point is located at the leading edge for every transonic Mach number of the oncoming flow and shape and small angle of attack of the airfoil. The pressure distribution on the upper and lower surfaces of the airfoil is symmetric near the edge point, and asymmetric deviations increase and become significant only when the distance from the leading edge of the airfoil increases beyond the inner region. Good agreement is found in the leading-edge region between the present solution and numerical solutions of the full potential-flow equations and the Euler equations.


1990 ◽  
Vol 43 (9) ◽  
pp. 209-221 ◽  
Author(s):  
Mario Lee ◽  
Chih-Ming Ho

On a delta wing, the separation vorticies can be stationary due to the balance of the vorticity surface flux and the axial convection along the swept leading edge. These stationary vortices keep the wing from losing lift. A highly swept delta wing reaches the maximum lift at an angle of attack of about 40°, which is more than twice as high as that of a two-dimensional airfoil. In this paper, the experimental results of lift forces for delta wings are reviewed from the perspective of fundamental vorticity balance. The effects of different operational and geometrical parameters on the performance of delta wings are surveyed.


1996 ◽  
Vol 63 (2) ◽  
pp. 543-550 ◽  
Author(s):  
N. J. Mourtos ◽  
M. Brooks

This paper presents a potential flow model for the leading edge vortex over a two-dimensional flat plate at an angle of attack. The paper is an extension of a model by Saffman and Sheffield (1977). A sink has been added in this model in an effort to satisfy the Kutta condition at both the leading edge and the trailing edge of the plate. The introduction of the sink was inspired by the fact that most steady vortices in nature appear in combination with a flow feature which can be interpreted as a sink at their cores when the flow is analyzed in a two-dimensional observation plane. As in the Saffman and Sheffield model, the presence of a vortex results in increased lift; however, in the current model a unique vortex/sink position is found at each angle of attack. A comparison has also been made between the lift and the drag of this model and the corresponding results for two classical solutions of flow over a flat plate: (a) the fully attached flow with the Kutta condition satisfied at the trailing edge only and (b) the Helmholtz solution of fully separated flow.


2018 ◽  
Vol 3 (4) ◽  
pp. 48
Author(s):  
Nesar Ali ◽  
Mostafizur Rahman Komol ◽  
Mohammad Takiuddin Saki

Thin airfoil theory is a simple conception of airfoils that describes angle of attack to lift for incompressible, inviscid flows. It was first devised by famous German-American mathematician Max Munk and therewithal refined by British aerodynamicist Hermann Glauertand others in the 1920s. The thin airfoil theory idealizes that the flow around an airfoil as two-dimensional flow around a thin airfoil. It can be conceived as addressing an airfoil of zero thickness and infinite wingspan. Thin airfoil theory was particularly citable in its day because it provided a well-established theoretical basis for the following important prominence of airfoils in two-dimensional flow like i) on a symmetric shape of airfoil which center of pressure and aerodynamic center remain exactly one quarter of the chord behind the leading edge, ii) on a cambered airfoil, the aerodynamic center lies exactly one quarter of the chord behind the leading edge and iii)the slope of the lift coefficient versus angle of attack line is two pi ( ) units per radian. The fundamental equation of Prandtl’s lifting-line theory; simply states that the geometric angle of attack is equal to the sum of the effective angle plus the induced angle of attack. And also omitted the theory of elliptical wing theory which indicates that the Elliptical wing has better flight performance than any other airfoil. In this experiment we made a model of elliptical wing and test in wind tunnel to get experimental value. We also analyze the model in simulation software for further knowledge. Comparing this practical and experimental value to other airfoil like Mosquito wing and NACA 64A012 airfoil for further research.


2020 ◽  
Vol 14 (1) ◽  
pp. 6526-6537
Author(s):  
A. Yeganeh ◽  
Mohammad Hassan Djavareshkian ◽  
E. Esmaeil

In this study, viscous, turbulent, and steady flow around an airfoil near the water surface has been simulated through a numerical method. In this simulation, Navier-Stokes equations have been solved using the finite volume method with a discretized second-order accuracy and PIMPLE algorithm. The Volume of Fraction (VOF) method has been employed to predict the free surface flow. A part of the simulation results has been validated through numerical and experimental data. Besides considering the style of flow separation in the angles of numerous attacks and airfoil static stall near the surface of the water. For this purpose, the airfoil simulation has been processed airfoil in the 68,000 Reynolds number, angle of attack of 2.5 to 11 degree and different distances from the water surface ( h/c = 0.5, 1,  ). In a larger angle of attacks, flow is initially separated from the leading edge of the surface, and then it attaches to the surface at a lower point. This reattachment leads to an increase in adverse pressure gradient and the formation of a larger separation in the downstream of the airfoil. The pressure gradient dramatically increases, and the flow gets separated from the upstream of the airfoil. Upon lowering distance from the surface, static stall takes place at a higher point and a lower angle of attack, respectively.


2000 ◽  
Vol 179 ◽  
pp. 229-232
Author(s):  
Anita Joshi ◽  
Wahab Uddin

AbstractIn this paper we present complete two-dimensional measurements of the observed brightness of the 9th November 1990Hαflare, using a PDS microdensitometer scanner and image processing software MIDAS. The resulting isophotal contour maps, were used to describe morphological-cum-temporal behaviour of the flare and also the kernels of the flare. Correlation of theHαflare with SXR and MW radiations were also studied.


2021 ◽  
Vol 11 (6) ◽  
pp. 2593
Author(s):  
Yasir Al-Okbi ◽  
Tze Pei Chong ◽  
Oksana Stalnov

Leading edge serration is now a well-established and effective passive control device for the reduction of turbulence–leading edge interaction noise, and for the suppression of boundary layer separation at high angle of attack. It is envisaged that leading edge blowing could produce the same mechanisms as those produced by a serrated leading edge to enhance the aeroacoustics and aerodynamic performances of aerofoil. Aeroacoustically, injection of mass airflow from the leading edge (against the incoming turbulent flow) can be an effective mechanism to decrease the turbulence intensity, and/or alter the stagnation point. According to classical theory on the aerofoil leading edge noise, there is a potential for the leading edge blowing to reduce the level of turbulence–leading edge interaction noise radiation. Aerodynamically, after the mixing between the injected air and the incoming flow, a shear instability is likely to be triggered owing to the different flow directions. The resulting vortical flow will then propagate along the main flow direction across the aerofoil surface. These vortical flows generated indirectly owing to the leading edge blowing could also be effective to mitigate boundary layer separation at high angle of attack. The objectives of this paper are to validate these hypotheses, and combine the serration and blowing together on the leading edge to harvest further improvement on the aeroacoustics and aerodynamic performances. Results presented in this paper strongly indicate that leading edge blowing, which is an active flow control method, can indeed mimic and even enhance the bio-inspired leading edge serration effectively.


2005 ◽  
Vol 127 (6) ◽  
pp. 1085-1094 ◽  
Author(s):  
Alan L. Kastengren ◽  
J. Craig Dutton

The near wake of a blunt-base cylinder at 10° angle-of-attack to a Mach 2.46 free-stream flow is visualized at several locations to study unsteady aspects of its structure. In both side-view and end-view images, the shear layer flapping grows monotonically as the shear layer develops, similar to the trends seen in a corresponding axisymmetric supersonic base flow. The interface convolution, a measure of the tortuousness of the shear layer, peaks for side-view and end-view images during recompression. The high convolution for a septum of fluid seen in the middle of the wake indicates that the septum actively entrains fluid from the recirculation region, which helps to explain the low base pressure for this wake compared to that for a corresponding axisymmetric wake.


Sign in / Sign up

Export Citation Format

Share Document