Viscous–inviscid interactions in transonic flows through slender nozzles

2011 ◽  
Vol 672 ◽  
pp. 487-520 ◽  
Author(s):  
A. KLUWICK ◽  
G. MEYER

Considering the miniaturization trend in technical applications, the need of a slender nozzle theory for such conventional, that is ideal-gas-like, fluids, which accounts for a strong boundary-layer interaction with the core region, arises in quite a natural way as the dimensions of the flow device are successively reduced. Moreover, a number of modern technological processes (e.g. organic Rankine cycles) involve fluids with high molecular complexity, some of which are expected to exhibit embedded regions with negative values of the fundamental derivative in the vapour phase commonly termed Bethe–Zel'dovich–Thompson (BZT) fluids. Linked to it, unconventional Laval nozzle geometries are needed to transform subsonic to supersonic internal flows. In the present paper, the transonic flows through nozzles of short length scales located in a channel of constant cross-section so slender that the flow in the inviscid core region is one-dimensional are considered. Rapid streamwise changes of the flow field caused by the nozzle then lead to a local breakdown of the classical hierarchical boundary-layer approach, which is overcome by the triple-deck concept. Consequently, the properties of the inviscid core and the near-wall (laminar) boundary-layer regions have to be calculated simultaneously. The resulting problem is formulated for both regular (ideal-gas-like) fluids and dense gases. Differences and similarities of the resulting flow pattern with respect to the well-known classical Laval nozzle flow are presented for perfect gases, and the regularizing influence of viscous–inviscid interactions, is examined. Furthermore, the analogous problem is considered for BZT fluids in detail as well. The results indicate that the passage through the sonic point in the inviscid core is strongly affected by the combined influence of nozzle geometry and boundary-layer displacement effects suggesting in turn an inverse Laval nozzle design in order to obtain the desired flow behaviour.

2017 ◽  
Vol 74 (8) ◽  
pp. 2575-2591 ◽  
Author(s):  
Junyao Heng ◽  
Yuqing Wang ◽  
Weican Zhou

Abstract The balanced and unbalanced aspects of tropical cyclone (TC) intensification are revisited with the balanced contribution diagnosed with the outputs from a full-physics model simulation of a TC using the Sawyer–Eliassen (SE) equation. The results show that the balanced dynamics can well capture the secondary circulation in the full-physics model simulation even in the inner-core region in the boundary layer. The balanced dynamics can largely explain the intensification of the simulated TC. The unbalanced dynamics mainly acts to prevent the boundary layer agradient flow in the inner-core region from further intensification. Although surface friction can enhance the boundary layer inflow and make the inflow penetrate more inward into the eye region, contributing to the eyewall contraction, the net dynamical effect of surface friction on TC intensification is negative. The sensitivity of the balanced solution to the procedure used to ensure the ellipticity condition for the SE equation is also examined. The results show that the boundary layer inflow in the balanced response is very sensitive to the adjustment to inertial stability in the upper troposphere and the calculation of radial wind at the surface with relatively coarse vertical resolution in the balanced solution. Both the use of the so-called global regularization and the one-sided finite-differencing scheme used to calculate the surface radial wind in the balanced solution as utilized in some previous studies can significantly underestimate the boundary layer inflow. This explains why the boundary layer inflow in the balanced response is too weak in some previous studies.


Author(s):  
Y. Shimizu ◽  
K. Sugiura ◽  
K. Sakaki ◽  
A. Devasanapathi

Abstract High Velocity Oxy-Fuel (HVOF) method using propylene as a fuel gas was employed to spray alumina particles. In order to improve the coating characteristics such as the deposition efficiency and the hardness, three HVOF gun nozzles of varying geometry were designed and tested experimentally. The spraying process was also simulated numerically for each of the nozzle geometries to understand their effectiveness in influencing the velocity and temperature of the sprayed particles. The coating was characterized using optical and scanning electron microscopy (SEM), micro-vickers hardness test and X-ray diffractometry (XRD). Results showed that with the use of a convergent and divergent type gun nozzle, similar to that of a Laval nozzle, the extent of melting of the alumina particles could be increased. This was exhibited by an increase in the deposition efficiency to the extent of 45%. However, the sharp changes in the convergent and divergent nozzle geometry, resulted in fusion and agglomeration of alumina particles leading to spitting during the spraying process. The results clearly showed that alumina coatings of excellent hardness in the range of 920-1290 HV, with a relatively dense microstructure could be obtained in HVOF method irrespective of the gun nozzle geometry, provided the spraying parameters are properly controlled.


Author(s):  
Muthuram A ◽  
Thanigaiarasu S ◽  
Rakesh Divvela ◽  
Rathakrishnan Ethirajan

AbstractEffect of nozzle geometries on the propagation of twin jet issuing from nozzles with circle-circle, circle-ellipse, circle-triangle, circle-square, circle-hexagon and circle-star geometrical combinations was investigated for Mach numbers 0.2, 0.4, 0.6 and 0.8. In all the cases, both jets in the twin jet had the same Mach number. All the twin jets of this study are free jets, discharged into stagnant ambient atmosphere. The result of the twin jets issuing from circle-circle nozzle is kept as the reference in this study. For all the twin jet nozzles, the inter nozzle spacing; the distance between the nozzle axes (S) was 20 mm and all the nozzles had an equivalent area of 78.5 mm2. Thus for all the cases of the present study, S/D ratio is 2. The results show that the mixing of the combined jet, after the merging point is strongly influenced by the combined effect of the nozzle geometry and jet Mach number. Among the six different twin jet nozzle configuration studied, circle-square combination is found to be the most superior mixing promoter.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Enrico Rinaldi ◽  
Rene Pecnik ◽  
Piero Colonna

Organic Rankine cycle (ORC) turbogenerators are the most viable option to convert sustainable energy sources in the low-to-medium power output range (from tens of kWe to several MWe). The design of efficient ORC turbines is particularly challenging due to their inherent unsteady nature (high expansion ratios and low speed of sound of organic compounds) and to the fact that the expansion encompasses thermodynamic states in the dense vapor region, where the ideal gas assumption does not hold. This work investigates the unsteady nonideal fluid dynamics and performance of a high expansion ratio ORC turbine by means of detailed Reynolds-averaged Navier–Stokes (RANS) simulations. The complex shock interactions resulting from the supersonic flow (M ≈ 2.8 at the vanes exit) are related to the blade loading, which can fluctuate up to 60% of the time-averaged value. A detailed loss analysis shows that shock-induced boundary layer separation on the suction side of the rotor blades is responsible for most of the losses in the rotor, and that further significant contributions are given by the boundary layer in the diverging part of the stator and by trailing edge losses. Efficiency loss due to unsteady interactions is quantified in 1.4% in absolute percentage points at design rotational speed. Thermophysical properties are found to feature large variations due to temperature even after the strong expansion in the nozzle vanes, thus supporting the use of accurate fluid models in the whole turbine stage.


Author(s):  
K. Kailasanath ◽  
Junhui Liu ◽  
Ephraim Gutmark ◽  
David Munday ◽  
Steven Martens

In this paper, we present observations on the impact of mechanical chevrons on modifying the flow field and noise emanated by supersonic jet flows. These observations are derived from both a monotonically integrated large-eddy simulation (MILES) approach to simulate the near fields of supersonic jet flows and laboratory experiments. The nozzle geometries used in this research are representative of practical engine nozzles. A finite-element flow solver using unstructured grids allows us to model the nozzle geometry accurately and the MILES approach directly computes the large-scale turbulent flow structures. The emphasis of the work is on “off-design” or non-ideally expanded flow conditions. LES for several total pressure ratios under non-ideally expanded flow conditions were simulated and compared to experimental data. The agreement between the predictions and the measurements on the flow field and near-field acoustics is good. After this initial step on validating the computational methodology, the impact of mechanical chevrons on modifying the flow field and hence the near-field acoustics is being investigated. This paper presents the results to date and further details will be presented at the meeting.


2002 ◽  
Vol 470 ◽  
pp. 291-317 ◽  
Author(s):  
E. V. BULDAKOV ◽  
A. I. RUBAN

The paper is concerned with the interaction between the boundary layer on a smooth body surface and the outer inviscid compressible flow in the vicinity of a sonic point. First, a family of local self-similar solutions of the Kármán–Guderley equation describing the inviscid flow behaviour immediately outside the interaction region is analysed; one of them was found to be suitable for describing the boundary-layer separation. In this solution the pressure has a singularity at the sonic point with the pressure gradient on the body surface being inversely proportional to the cubic root dpw/dx ∼ (−x)−1/3 of the distance (−x) from the sonic point. This pressure gradient causes the boundary layer to interact with the inviscid part of the flow. It is interesting that the skin friction in the boundary layer upstream of the interaction region shows a characteristic logarithmic decay which determines an unusual behaviour of the flow inside the interaction region. This region has a conventional triple-deck structure. To study the interactive flow one has to solve simultaneously the Prandtl boundary-layer equations in the lower deck which occupies a thin viscous sublayer near the body surface and the Kármán–Guderley equations for the upper deck situated in the inviscid flow outside the boundary layer. In this paper a numerical solution of the interaction problem is constructed for the case when the separation region is entirely contained within the viscous sublayer and the inviscid part of the flow remains marginally supersonic. The solution proves to be non-unique, revealing a hysteresis character of the flow in the interaction region.


2018 ◽  
Vol 47 (2) ◽  
pp. 131-135
Author(s):  
Csaba Jéger ◽  
Árpád Veress

Numerical analyses, validation and geometric optimization of a converging-diverging nozzle flows has been established in the present work. The optimal nozzle contour for a given nozzle pressure ratio and length yields the largest obtainable thrust for the conditions and thus minimises the losses. Application of such methods reduces the entry cost to the market, promote innovation and accelerate the development processes. A parametric geometry, numerical mesh and simulation model is constructed first to solve the problem. The simulation model is then validated by using experimental and computational data. The optimizations are completed for conical and bell shaped nozzles also to find the suitable nozzle geometries for the given conditions. Results are in good agreement with existing nozzle flow fields. The optimization loop described and implemented here can be used in the all similar situations and can be the basis of an improved nozzle geometry optimization procedure by means of using a multiphysics system to generate the final model with reduced number sampling phases.


Author(s):  
Navid Sharifi ◽  
Majid Sharifi

Ejectors are widely used in different applications such as refrigeration, propulsion, evacuation and aerospace. They use a pressurized flow as a motive stream to entrain a secondary flow or suction flow. In the current study, a malfunctioning steam ejector is studied experimentally to identify the sources of low compression ratio. This ejector was designed to operate under a motive pressure of 6 bar. However, the required vacuum in the system was not attained unless the pressure of motive steam was increased to 8 bar. The steam ejector was coupled with other unit operating facilities and hence, the ejector replacement was very costly. Therefore, the fastest and the most inexpensive way of improving the device performance was considered as replacing just the primary nozzle and without any further change in ejector’s geometry. To achieve the required vacuum under the available motive pressure (i.e. 6 bar), a CFD–based optimization procedure was performed and different nozzle shapes were numerically investigated. The CFD Models were constrained to a fixed constant throat since the optimized nozzle shall not consume more flow rate than the former one. Ten different nozzle geometries were scrutinized in this numerical simulation and the one, which yields the highest entraining performance under the given boundary condition (i.e. motive flow pressure of 6 bar), was selected as the most optimized nozzle and manufactured. After installing the designed nozzle, an improved entrainment capability was observed and a desired vacuum level was attained under the nominal pressure of 6 bar.


Sign in / Sign up

Export Citation Format

Share Document