scholarly journals Stability and evolution of electromagnetic solitons in relativistic degenerate laser plasmas

2020 ◽  
Vol 86 (6) ◽  
Author(s):  
Sima Roy ◽  
A. P. Misra

The dynamical behaviours of electromagnetic (EM) solitons formed due to nonlinear interaction of linearly polarized intense laser light and relativistic degenerate plasmas are studied. In the slow-motion approximation of relativistic dynamics, the evolution of weakly nonlinear EM envelope is described by the generalized nonlinear Schrödinger (GNLS) equation with local and nonlocal nonlinearities. Using the Vakhitov–Kolokolov criterion, the stability of an EM soliton solution of the GNLS equation is studied. Different stable and unstable regions are demonstrated with the effects of soliton velocity, soliton eigenfrequency, as well as the degeneracy parameter $R=p_{Fe}/m_ec$ , where $p_{Fe}$ is the Fermi momentum and $m_e$ the electron mass and $c$ is the speed of light in vacuum. It is found that the stability region shifts to an unstable one and is significantly reduced as one enters from the regimes of weakly relativistic $(R\ll 1)$ to ultrarelativistic $(R\gg 1)$ degeneracy of electrons. The analytically predicted results are in good agreement with the simulation results of the GNLS equation. It is shown that the standing EM soliton solutions are stable. However, the moving solitons can be stable or unstable depending on the values of soliton velocity, the eigenfrequency or the degeneracy parameter. The latter with strong degeneracy $(R>1)$ can eventually lead to soliton collapse.

2006 ◽  
Vol 36 (1) ◽  
pp. 122-139 ◽  
Author(s):  
Seung-Ji Ha ◽  
Gordon E. Swaters

Abstract The weakly nonlinear baroclinic instability characteristics of time-varying grounded abyssal flow on sloping topography with dissipation are described. Specifically, the finite-amplitude evolution of marginally unstable or stable abyssal flow both at and removed from the point of marginal stability (i.e., the minimum shear required for instability) is determined. The equations governing the evolution of time-varying dissipative abyssal flow not at the point of marginal stability are identical to those previously obtained for the Phillips model for zonal flow on a β plane. The stability problem at the point of marginally stability is fully nonlinear at leading order. A wave packet model is introduced to examine the role of dissipation and time variability in the background abyssal current. This model is a generalization of one introduced for the baroclinic instability of zonal flow on a β plane. A spectral decomposition and truncation leads, in the absence of time variability in the background flow and dissipation, to the sine–Gordon solitary wave equation that has grounded abyssal soliton solutions. The modulation characteristics of the soliton are determined when the underlying abyssal current is marginally stable or unstable and possesses time variability and/or dissipation. The theory is illustrated with examples.


2021 ◽  
Author(s):  
Dong-Ning Yue ◽  
Min Chen ◽  
Yao Zhao ◽  
Pan-Fei Geng ◽  
Xiao-Hui Yuan ◽  
...  

Abstract Generation of nonlinear structures, such as stimulated Raman side scattering waves, post-solitons and electron vortices, during ultra-short intense laser pulse transportation in near-critical-density (NCD) plasmas are studied by using multi-dimensional particle-in-cell (PIC) simulations. In two-dimensional geometries, both P- and S- polarized laser pulses are used to drive these nonlinear structures and to check the polarization effects on them. In the S-polarized case, the scattered waves can be captured by surrounding plasmas leading to the generation of post-solitons, while the main pulse excites convective electric currents leading to the formation of electron vortices through Kelvin-Helmholtz instability (KHI). In the P-polarized case, the scattered waves dissipate their energy by heating surrounding plasmas. Electron vortices are excited due to the hosing instability of the drive laser. These polarization dependent physical processes are reproduced in two different planes perpendicular to the laser propagation direction in three-dimensional simulation with linearly polarized laser driver. The current work provides inspiration for future experiments of laser-NCD plasma interactions.


2018 ◽  
Vol 22 ◽  
pp. 01061 ◽  
Author(s):  
Asif Yokus ◽  
Tukur Abdulkadir Sulaiman ◽  
Haci Mehmet Baskonus ◽  
Sibel Pasali Atmaca

This study acquires the exact and numerical approximations of a reaction-convection-diffusion equation arising in mathematical bi- ology namely; Murry equation through its analytical solutions obtained by using a mathematical approach; the modified exp(-Ψ(η))-expansion function method. We successfully obtained the kink-type and singular soliton solutions with the hyperbolic function structure to this equa- tion. We performed the numerical simulations (3D and 2D) of the obtained analytical solutions under suitable values of parameters. We obtained the approximate numerical and exact solutions to this equa- tion by utilizing the finite forward difference scheme by taking one of the obtained analytical solutions into consideration. We investigate the stability of the finite forward difference method with the equation through the Fourier-Von Neumann analysis. We present the L2 and L∞ error norms of the approximations. The numerical and exact approx- imations are compared and the comparison is supported by a graphic plot. All the computations and the graphics plots in this study are car- ried out with help of the Matlab and Wolfram Mathematica softwares. Finally, we submit a comprehensive conclusion to this study.


1988 ◽  
Vol 110 (4) ◽  
pp. 382-388
Author(s):  
Liang-Wey Chang ◽  
James F. Hamilton

This paper presents a method for simulating systems with two inertially coupled motions, i.e., a slow motion and a fast motion. The equations of motion are separated into two sets of coupled nonlinear ordinary differential equations. For each time step, the two sets of equations are integrated sequentially rather than simultaneously. Explicit integration methods are used for integrating the slow motion since the stability of the integration is not a problem and the explicit methods are very convenient for nonlinear equations. For the fast motion, the equations are linear and the implicit integrations can be used with guaranteed stability. The size of time step only needs to be chosen to provide accuracy of the solution for the modes that are excited. The interaction between the two types of motion must be treated such that secular terms do not appear due to the sequential integration method. A lumped model of a flexible pendulum will be presented in this paper to illustrate the application of the method. Numerical results for both simultaneous and sequential integration are presented for comparison.


2001 ◽  
Vol 429 ◽  
pp. 343-380 ◽  
Author(s):  
BRUCE R. SUTHERLAND

The evolution and stability of two-dimensional, large-amplitude, non-hydrostatic internal wavepackets are examined analytically and by numerical simulations. The weakly nonlinear dispersion relation for horizontally periodic, vertically compact internal waves is derived and the results are applied to assess the stability of weakly nonlinear wavepackets to vertical modulations. In terms of Θ, the angle that lines of constant phase make with the vertical, the wavepackets are predicted to be unstable if [mid ]Θ[mid ] < Θc, where Θc = cos−1 (2/3)1/2 ≃ 35.3° is the angle corresponding to internal waves with the fastest vertical group velocity. Fully nonlinear numerical simulations of finite-amplitude wavepackets confirm this prediction: the amplitude of wavepackets with [mid ]Θ[mid ] > Θc decreases over time; the amplitude of wavepackets with [mid ]Θ[mid ] < Θc increases initially, but then decreases as the wavepacket subdivides into a wave train, following the well-known Fermi–Pasta–Ulam recurrence phenomenon.If the initial wavepacket is of sufficiently large amplitude, it becomes unstable in the sense that eventually it convectively overturns. Two new analytic conditions for the stability of quasi-plane large-amplitude internal waves are proposed. These are qualitatively and quantitatively different from the parametric instability of plane periodic internal waves. The ‘breaking condition’ requires not only that the wave is statically unstable but that the convective instability growth rate is greater than the frequency of the waves. The critical amplitude for breaking to occur is found to be ACV = cot Θ (1 + cos2 Θ)/2π, where ACV is the ratio of the maximum vertical displacement of the wave to its horizontal wavelength. A second instability condition proposes that a statically stable wavepacket may evolve so that it becomes convectively unstable due to resonant interactions between the waves and the wave-induced mean flow. This hypothesis is based on the assumption that the resonant long wave–short wave interaction, which Grimshaw (1977) has shown amplifies the waves linearly in time, continues to amplify the waves in the fully nonlinear regime. Using linear theory estimates, the critical amplitude for instability is ASA = sin 2Θ/(8π2)1/2. The results of numerical simulations of horizontally periodic, vertically compact wavepackets show excellent agreement with this latter stability condition. However, for wavepackets with horizontal extent comparable with the horizontal wavelength, the wavepacket is found to be stable at larger amplitudes than predicted if Θ [lsim ] 45°. It is proposed that these results may explain why internal waves generated by turbulence in laboratory experiments are often observed to be excited within a narrow frequency band corresponding to Θ less than approximately 45°.


1999 ◽  
Vol 62 (2) ◽  
pp. 219-232 ◽  
Author(s):  
E. VERWICHTE ◽  
V. M. NAKARIAKOV ◽  
A. W. LONGBOTTOM

The temporal evolution of weakly nonlinear, plane, linearly polarized Alfvén pulses in a cold homogeneous plasma is investigated. A static initial pulse-like disturbance in transverse velocity produces two Alfvén pulses that travel in opposite directions along the magnetic field. The ponderomotive force of the two pulses produces a static shock in longitudinal velocity at the starting position. The travelling pulses form a shock front that is governed by the scalar Cohen–Kulsrud equation. We find good agreement between the analytical solutions we derive and the results from a fully nonlinear numerical MHD code.


1998 ◽  
Vol 120 (3) ◽  
pp. 154-164 ◽  
Author(s):  
M. M. Bernitsas ◽  
L. O. Garza-Rios

Analytical expressions of the bifurcation boundaries exhibited by turret mooring systems (TMS), and expressions that define the morphogeneses occurring across boundaries are developed. These expressions provide the necessary means for evaluating the stability of a TMS around an equilibrium position, and constructing catastrophe sets in two or three-dimensional parametric design spaces. Sensitivity analyses of the bifurcation boundaries define the effect of any parameter or group of parameters on the dynamical behavior of the system. These expressions allow the designer to select appropriate values for TMS design parameters without resorting to trial and error. A four-line TMS is used to demonstrate this design methodology. The mathematical model consists of the nonlinear, fifth-order, low-speed, large-drift maneuvering equations. Mooring lines are modeled with submerged catenaries, and include nonlinear drag. External excitation consists of time-independent current, wind, and mean wave drift.


Author(s):  
B Sagar ◽  
S. Saha Ray

In this paper, a novel meshless numerical scheme to solve the time-fractional Oskolkov–Benjamin–Bona–Mahony–Burgers-type equation has been proposed. The proposed numerical scheme is based on finite difference and Kansa-radial basis function collocation approach. First, the finite difference scheme has been employed to discretize the time-fractional derivative and subsequently, the Kansa method is utilized to discretize the spatial derivatives. The stability and convergence analysis of the time-discretized numerical scheme are also elucidated in this paper. Moreover, the Kudryashov method has been utilized to acquire the soliton solutions for comparison with the numerical results. Finally, numerical simulations are performed to confirm the applicability and accuracy of the proposed scheme.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1448
Author(s):  
Anand Kumar ◽  
Vinod K. Gupta ◽  
Neetu Meena ◽  
Ishak Hashim

In this article, a study on the stability of Walter-B viscoelastic fluid in the highly permeable porous medium under the rotational speed modulation is presented. The impact of rotational modulation on heat transport is performed through a weakly nonlinear analysis. A perturbation procedure based on the small amplitude of the perturbing parameter is used to study the combined effect of rotation and permeability on the stability through a porous medium. Rayleigh–Bénard convection with the Coriolis expression has been examined to explain the impact of rotation on the convective flow. The graphical result of different parameters like modified Prandtl number, Darcy number, Rayleigh number, and Taylor number on heat transfer have discussed. Furthermore, it is found that the modified Prandtl number decelerates the heat transport which may be due to the combined effect of elastic parameter and Taylor number.


Sign in / Sign up

Export Citation Format

Share Document