scholarly journals Role of Vigna Radiata extracts in modulating oxidative stress in an in vitro cell system

2015 ◽  
Vol 74 (OCE3) ◽  
Author(s):  
G. Kapravelou ◽  
K. Brahim ◽  
M Goua ◽  
R. Martínez ◽  
M. Lopez-Jurado ◽  
...  
2021 ◽  
Vol 22 (11) ◽  
pp. 5705
Author(s):  
Karolina Szewczyk-Golec ◽  
Marta Pawłowska ◽  
Roland Wesołowski ◽  
Marcin Wróblewski ◽  
Celestyna Mila-Kierzenkowska

Toxoplasma gondii is an apicomplexan parasite causing toxoplasmosis, a common disease, which is most typically asymptomatic. However, toxoplasmosis can be severe and even fatal in immunocompromised patients and fetuses. Available treatment options are limited, so there is a strong impetus to develop novel therapeutics. This review focuses on the role of oxidative stress in the pathophysiology and treatment of T. gondii infection. Chemical compounds that modify redox status can reduce the parasite viability and thus be potential anti-Toxoplasma drugs. On the other hand, oxidative stress caused by the activation of the inflammatory response may have some deleterious consequences in host cells. In this respect, the potential use of natural antioxidants is worth considering, including melatonin and some vitamins, as possible novel anti-Toxoplasma therapeutics. Results of in vitro and animal studies are promising. However, supplementation with some antioxidants was found to promote the increase in parasitemia, and the disease was then characterized by a milder course. Undoubtedly, research in this area may have a significant impact on the future prospects of toxoplasmosis therapy.


2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zonghao Tang ◽  
Jiajie Chen ◽  
Zhenghong Zhang ◽  
Jingjing Bi ◽  
Renfeng Xu ◽  
...  

The increase of oxidative stress is one of the important characteristics of mammalian luteal regression. Previous investigations have revealed the essential role of reactive oxygen species (ROS) in luteal cell death during luteolysis, while it is unknown how ROS is regulated in this process. Considering the decrease of blood flow and increase of PGF2α during luteolysis, we hypothesized that the HIF-1α pathway may be involved in the regulation of ROS in the luteal cell of the late corpus luteum (CL). Here, by using a pseudopregnant rat model, we showed that the level of both HIF-1α and its downstream BNIP3 was increased during luteal regression. Consistently, we observed the increase of autophagy level during luteolysis, which is regulated in a Beclin1-independent manner. Comparing with early (Day 7 of pseudopregnancy) and middle CL (Day 14), the level of ROS was significantly increased in late CL, indicating the contribution of oxidative stress in luteolysis. Inhibition of HIF-1α by echinomycin (Ech), a potent HIF-1α inhibitor, ameliorated the upregulation of BNIP3 and NIX, as well as the induction of autophagy and the accumulation of ROS in luteal cells on Day 21 of pseudopregnancy. Morphologically, Ech treatment delayed the atrophy of the luteal structure at the late-luteal stage. An in vitro study indicated that inhibition of HIF-1α can also attenuate PGF2α-induced ROS and luteal cell apoptosis. Furthermore, the decrease of cell apoptosis can also be observed by ROS inhibition under PGF2α treatment. Taken together, our results indicated that HIF-1α signaling is involved in the regression of CL by modulating ROS production via orchestrating autophagy. Inhibition of HIF-1α could obviously hamper the apoptosis of luteal cells and the process of luteal regression.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Shiyao Xue ◽  
Hongdong Han ◽  
Shunli Rui ◽  
Mengliu Yang ◽  
Yizhou Huang ◽  
...  

Previous studies on serum fetuin-B (fetuin-like protein IRL685) have investigated its association with T2DM; however, the reason for the variation in serum fetuin-B and its regulatory factors in metabolic disease remain unclear. Here, we evaluated serum fetuin-B levels in women with newly diagnosed MetS and performed multiple interventions to investigate the role of fetuin-B in the pathogenesis of MetS. Serum fetuin-B levels were assessed using ELISA. Bioinformatics analysis was performed to analyze fetuin-B-related genes and signaling pathways. Additionally, oxidative stress parameters were measured in the in vitro study. For subgroup analyses, we performed EHC, OGTT, and treatment with a GLP-1RA to investigate the regulatory factors of serum fetuin-B. We found that in comparison with healthy subjects, serum fetuin-B levels were markedly increased in women with MetS. Further, serum fetuin-B showed a positive correlation with WHR, FAT%, TG, FBG, HbA1c, FIns, HOMA-IR, VAI, and LAP. Bioinformatics analysis revealed that most fetuin-B-related core genes were involved in cholesterol metabolism and fat decomposition. Consistent with this finding, multivariate regression analysis showed that triglyceride content and WHR were independently associated with serum fetuin-B. We also observed that serum fetuin-B levels were markedly elevated in healthy subjects after glucose loading and in women with MetS during EHC. In vitro, overexpression of fetuin-B promoted oxidative stress in HepG2 cell. After 6 months of treatment with a GLP-1RA, serum fetuin-B levels in women with MetS decreased following an improvement in metabolism and insulin sensitivity. Therefore, serum fetuin-B is associated with MetS, which may serve as a biomarker of oxidative stress. This trial is registered with ChiCTR-OCC-11001422.


2022 ◽  
Author(s):  
Zhao Huang ◽  
Li Zhou ◽  
Jiufei Duan ◽  
Siyuan Qin ◽  
Yu Wang ◽  
...  

Abstract Loss of E-cadherin (ECAD), often caused by epigenetic inactivation, is closely associated with tumor metastasis. However, how ECAD is regulated in response to oxidative stress during tumorigenesis is largely unknown. Here we identify RNF25 as a new E3 ligase of ECAD, whose activation by oxidative stress leads to ECAD protein degradation in hepatocellular carcinoma (HCC). Loss of ECAD activates YAP, which in turn promotes the transcription of RNF25, thus forming a positive feedback loop to sustain the ECAD downregulation. YAP activation mitigates oxidative stress in detached HCC cells by upregulating antioxidant genes, protecting detached HCC cells from ferroptosis, resulting in anoikis resistance. Mechanistically, we found that protein kinase A (PKA) senses oxidative stress by redox modification in its β catalytic subunit (PRKACB) at Cys200 and Cys344, which increases its kinase activity towards RNF25 phosphorylation at Ser450, facilitating RNF25-mediated degradation of ECAD. Moreover, RNF25 expression is associated with HCC metastasis and depletion of RNF25 is sufficient to diminish HCC invasion and metastasis in vitro and in vivo. Together, these results identify a dual role of RNF25 as a critical regulator of ECAD protein turnover, promoting both anoikis resistance and metastasis, and PKA is a necessary redox sensor to enable this process. Our study provides mechanistic insight into how tumor cells sense oxidative stress signals to spread while escaping cell death.


2001 ◽  
Vol 74 (11) ◽  
pp. 695-701 ◽  
Author(s):  
Bernard Fauconneau ◽  
Sabrina Stadelmann-Ingrand ◽  
Sylvie Favrelière ◽  
Julien Baudouin ◽  
Laurent Renaud ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Małgorzata Olszowy-Tomczyk ◽  
Łukasz Paprotny ◽  
Agnieszka Celejewska ◽  
Dorota Szewczak ◽  
Dorota Wianowska

Abstract The imbalance between the production of Reactive Oxygen Species (ROS) and their sequestration promotes the formation of so-called oxidative stress conditions which are considered crucial in the aging process and development of many human diseases. Glutathione plays an essential role in the antioxidative barricade against ROS. Its role in the detoxification process of xenobiotics and carcinogen is also known. However, there are no comparative studies on the antioxidant properties of both biological samples and glutathione as well as the change in these properties as a result of exposure to various stress factors. This paper fills this gap comparing the antioxidant activity of serum and plasma samples of the known glutathione content with the activity of glutathione itself assessed by the different methods. In addition, it reveals a significant role of environmental xenobiotics in oxidative stress and differentiates the stress induced by different groups of drugs, among which the greatest one has been demonstrated for antiarrhythmic drugs and cytostatics. More importantly, it proves that human plasma is more resistant to stress factors and N-acetylcysteine clearly promotes the extension of antioxidant properties of both the plasma and serum samples. The latter conclusion is consistent with the implied preventive and/or supportive action of this drug against SARS-CoV-2.


2021 ◽  
Author(s):  
Charlotte Sarre ◽  
Rafael Contreras Lopez ◽  
Nitirut Nerpernpisooth ◽  
Christian Barrere ◽  
Sarah Bahraoui ◽  
...  

Abstract Background: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARβ/δ (Peroxisome proliferator-activated receptors β/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARβ/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARβ/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. Objectives: The aim of this study was to investigate the role of PPARβ/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction.Methods and results: Naïve MSC and MSC pharmacologically activated or inhibited for PPARβ/δ were challenged with H202. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARβ/δ agonist GW0742 versus naïve MSC. In addition, PPARβ/δ-priming allowed to reveal the anti-apoptotic effect of MSC on co-cultured cardiomyocytes. When injected during reperfusion in an ex vivo heart model of myocardial infarction, PPARβ/δ-primed MSC at a dose of 3.75x105 MSC/heart provided the same cardioprotective efficiency than 7.5x105 naïve MSC, identified as the optimal dose in our model. These enhanced short-term cardioprotective effects were associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 hour of reperfusion. By contrast, inhibition of PPARβ/δ before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. Conclusion: Altogether these results revealed that PPARβ/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARβ/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


2020 ◽  
Vol 64 (2) ◽  
Author(s):  
Carla Loreto ◽  
Rosario Caltabiano ◽  
Adriana Carol Eleonora Graziano ◽  
Sergio Castorina ◽  
Claudia Lombardo ◽  
...  

Fluoro-edenite (FE), an asbestiform fiber, is responsible for many respiratory pathologies: chronic obstructive diseases, pleural plaques, fibrosis, and malignant mesothelioma. Macrophage migration inhibitory factor (MIF) is one of the first cytokines produced in response to lung tissue damage. Heme oxygenase-1 (HO-1) is a protein with protective effects against oxidative stress. It is up regulated by several stimuli including pro-inflammatory cytokines and factors that promote oxidative stress. In this research, the in vivo model of sheep lungs naturally exposed to FE was studied in order to shed light on the pathophysiological events sustaining exposure to fibers, by determining immunohistochemical lung expression of MIF and HO-1. Protein levels expression of HO-1 and MIF were also evaluated in human primary lung fibroblasts after exposure to FE fibers in vitro. In exposed sheep lungs, MIF and HO-1 immunoexpression were spread involving the intraparenchymal stroma around bronchioles, interstitium between alveoli, alveolar epithelium and macrophages. High MIF immunoexpression prevails in macrophages. Similar results were obtained in vitro, but significantly higher values were only detected for HO-1 at concentrations of 50 and 100 μg/mL of FE fibers. MIF and HO-1 expressions seem to play a role in lung self-protection against uncontrolled chronic inflammation, thus counteracting the strong link with cancer development, induced by exposure to FE. Further studies will be conducted in order to add more information about the role of MIF and HO-1 in the toxicity FE-induced.


Sign in / Sign up

Export Citation Format

Share Document