scholarly journals The Role of the FOXO1/β2-AR/p-NF-κB p65 Pathway in the Development of Endometrial Stromal Cells in Pregnant Mice under Restraint Stress

2021 ◽  
Vol 22 (3) ◽  
pp. 1478
Author(s):  
Jiayin Lu ◽  
Yaoxing Chen ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong

Restraint stress causes various maternal diseases during pregnancy. β2-Adrenergic receptor (β2-AR) and Forkhead transcription factor class O 1 (FOXO1) are critical factors not only in stress, but also in reproduction. However, the role of FOXO1 in restraint stress, causing changes in the β2-AR pathway in pregnant mice, has been unclear. The aim of this research was to investigate the β2-AR pathway of restraint stress and its impact on the oxidative stress of the maternal uterus. In the study, maternal mice were treated with restraint stress by being restrained in a transparent and ventilated device before sacrifice on Pregnancy Day 5 (P5), Pregnancy Day 10 (P10), Pregnancy Day 15 (P15), and Pregnancy Day 20 (P20) as well as on Non-Pregnancy Day 5 (NP5). Restraint stress augmented blood corticosterone (CORT), norepinephrine (NE), and blood glucose levels, while oestradiol (E2) levels decreased. Moreover, restraint stress increased the mRNA levels of the FOXO family, β2-AR, and even the protein levels of FOXO1 and β2-AR in the uterus and ovaries. Furthermore, restraint stress increased uterine oxidative stress level. In vitro, the protein levels of FOXO1 were also obviously increased when β2-AR was activated in endometrial stromal cells (ESCs). In addition, phosphorylated-nuclear factor kappa-B p65 (p-NF-κB p65) and its target genes decreased significantly when FOXO1 was inhibited. Overall, it can be said that the β2-AR/FOXO1/p-NF-κB p65 pathway was activated when pregnant mice were under restraint stress. This study provides a scientific basis for the origin of psychological stress in pregnant women.

2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Ivika Jakson ◽  
Dorina Ujvari ◽  
Sebastian Brusell Gidlöf ◽  
Angelica Lindén Hirschberg

Abstract Background Solute carrier family 2 member 1 (SLC2A1; previously known as glucose transporter 1), is the most abundant glucose transporter in human endometrium and is up-regulated during decidualization, whereas high insulin may have a negative impact on this process. The present study aimed to investigate the effect of insulin on the expression of SLC2A1 and glucose uptake in decidualizing human endometrial stromal cells. Methods We induced in vitro decidualization of endometrial stromal cells obtained from regularly menstruating healthy non-obese women. The cells were treated with increasing concentrations of insulin, and the involvement of the transcription factor forkhead box O1 (FOXO1) was evaluated using a FOXO1 inhibitor. SLC2A1 mRNA levels were measured by Real-Time PCR and protein levels were evaluated by immunocytochemistry. Glucose uptake was estimated by an assay quantifying the cellular uptake of radioactive glucose. One-way ANOVA, Dunnett’s multiple comparisons test and paired t-test were used to determine the statistical significance of the results. Results We found that insulin dose-dependently decreased SLC2A1 mRNA levels and decreased protein levels of SLC2A1 in decidualizing human endometrial stromal cells. Transcriptional inactivation of FOXO1 seems to explain at least partly the down-regulation of SLC2A1 by insulin. Glucose uptake increased upon decidualization, whereas insulin treatment resulted in a slight inhibition of the glucose uptake, although not significant for all insulin concentrations. Conclusions These results indicate an impairment of decidualization by high concentrations of insulin. Future studies will determine the clinical significance of our results for endometrial function and decidualization in women with insulin resistance and hyperinsulinemia.


Endocrinology ◽  
2009 ◽  
Vol 150 (10) ◽  
pp. 4734-4743 ◽  
Author(s):  
Kun Qian ◽  
Linli Hu ◽  
Hong Chen ◽  
Haixia Li ◽  
Na Liu ◽  
...  

Abstract Decidualization is a critical step during embryo implantation and characterized by the differentiation of endometrial stromal cells (ESCs) into decidual cells. Because miRNAs are important determinants of cellular fate specification, in this study, the miRNA expression in ESCs during in vitro decidualization was profiled by using a microarray. Significance analysis of microarrays revealed that 49 miRNA genes were differently (>2-fold) expressed between the noninduced ESCs and induced ESCs with a false discovery rate of 0. The expression variance of hsa-miR-222, 221, 143, 101, 30d, 30c, 181b, 27b, 29b, 507, and 23a was validated by using quantitative PCR (P < 0.05). Based on microRNA (miRNA) and mRNA expression variance and predicted target genes of miRNAs, a bioinformatic model of miRNAs controlling ESCs differentiation was formulated. Finally, we proved that down-regulation of has-miR-222 could decrease the number of cells in S phase during ESCs differentiation (P < 0.05). Antisense oligonucleotides of has-miR-222 could increase reporter gene expression by targeting the 3′ untranslated regions of CDKN1C/p57kip2 mRNAs as well as increase CDKN1C/p57kip2 protein levels (P < 0.05). In conclusion, our results suggest that a subset of miRNAs play a key role in gene reprogramming during ESCs decidualization and that hsa-miR-222 participates in ESC differentiation by regulating ESCs terminally withdrawing from the cell cycle.


2021 ◽  
Vol 53 (1) ◽  
pp. 125-135
Author(s):  
Priti Azad ◽  
Francisco C. Villafuerte ◽  
Daniela Bermudez ◽  
Gargi Patel ◽  
Gabriel G. Haddad

AbstractMonge’s disease (chronic mountain sickness (CMS)) is a maladaptive condition caused by chronic (years) exposure to high-altitude hypoxia. One of the defining features of CMS is excessive erythrocytosis with extremely high hematocrit levels. In the Andean population, CMS prevalence is vastly different between males and females, being rare in females. Furthermore, there is a sharp increase in CMS incidence in females after menopause. In this study, we assessed the role of sex hormones (testosterone, progesterone, and estrogen) in CMS and non-CMS cells using a well-characterized in vitro erythroid platform. While we found that there was a mild (nonsignificant) increase in RBC production with testosterone, we observed that estrogen, in physiologic concentrations, reduced sharply CD235a+ cells (glycophorin A; a marker of RBC), from 56% in the untreated CMS cells to 10% in the treated CMS cells, in a stage-specific and dose-responsive manner. At the molecular level, we determined that estrogen has a direct effect on GATA1, remarkably decreasing the messenger RNA (mRNA) and protein levels of GATA1 (p < 0.01) and its target genes (Alas2, BclxL, and Epor, p < 0.001). These changes result in a significant increase in apoptosis of erythroid cells. We also demonstrate that estrogen regulates erythropoiesis in CMS patients through estrogen beta signaling and that its inhibition can diminish the effects of estrogen by significantly increasing HIF1, VEGF, and GATA1 mRNA levels. Taken altogether, our results indicate that estrogen has a major impact on the regulation of erythropoiesis, particularly under chronic hypoxic conditions, and has the potential to treat blood diseases, such as high altitude severe erythrocytosis.


2021 ◽  
Author(s):  
Charlotte Sarre ◽  
Rafael Contreras Lopez ◽  
Nitirut Nerpernpisooth ◽  
Christian Barrere ◽  
Sarah Bahraoui ◽  
...  

Abstract Background: Mesenchymal Stromal Cells (MSC) have been widely used for their therapeutic properties in many clinical applications including myocardial infarction. Despite promising preclinical results and evidences of safety and efficacy in phases I/ II, inconsistencies in phase III trials have been reported. In a previous study, we have shown using MSC derived from the bone marrow of PPARβ/δ (Peroxisome proliferator-activated receptors β/δ) knockout mice that the acute cardioprotective properties of MSC during the first hour of reperfusion are PPARβ/δ-dependent but not related to the anti-inflammatory effect of MSC. However, the role of the modulation of PPARβ/δ expression on MSC cardioprotective and anti-apoptotic properties has never been investigated. Objectives: The aim of this study was to investigate the role of PPARβ/δ modulation (inhibition or activation) in MSC therapeutic properties in vitro and ex vivo in an experimental model of myocardial infarction.Methods and results: Naïve MSC and MSC pharmacologically activated or inhibited for PPARβ/δ were challenged with H202. Through specific DNA fragmentation quantification and qRT-PCR experiments, we evidenced in vitro an increased resistance to oxidative stress in MSC pre-treated by the PPARβ/δ agonist GW0742 versus naïve MSC. In addition, PPARβ/δ-priming allowed to reveal the anti-apoptotic effect of MSC on co-cultured cardiomyocytes. When injected during reperfusion in an ex vivo heart model of myocardial infarction, PPARβ/δ-primed MSC at a dose of 3.75x105 MSC/heart provided the same cardioprotective efficiency than 7.5x105 naïve MSC, identified as the optimal dose in our model. These enhanced short-term cardioprotective effects were associated with an increase in both anti-apoptotic effects and the number of MSC detected in the left ventricular wall at 1 hour of reperfusion. By contrast, inhibition of PPARβ/δ before their administration in post-ischemic hearts during reperfusion decreased their cardioprotective effects. Conclusion: Altogether these results revealed that PPARβ/δ-primed MSC exhibit an increased resistance to oxidative stress and enhanced anti-apoptotic properties on cardiac cells in vitro. PPARβ/δ-priming appears as an innovative strategy to enhance the cardioprotective effects of MSC and to decrease the injected doses. These results could be of major interest to improve MSC efficacy for the cardioprotection of injured myocardium in AMI patients.


2012 ◽  
Vol 303 (12) ◽  
pp. F1629-F1640 ◽  
Author(s):  
Himanshu Vashistha ◽  
Pravin C. Singhal ◽  
Ashwani Malhotra ◽  
Mohammad Husain ◽  
Peter Mathieson ◽  
...  

Candidate genes have been identified that confer increased risk for diabetic glomerulosclerosis (DG). Mice heterozygous for the Akita (Ins2+/C96Y) diabetogenic mutation with a second mutation introduced at the bradykinin 2 receptor (B2R−/−) locus express a disease phenotype that approximates human DG. Src homology 2 domain transforming protein 1 (p66) controls mitochondrial metabolism and cellular responses to oxidative stress, aging, and apoptosis. We generated p66-null Akita mice to test whether inactivating mutations at the p66 locus will rescue kidneys of Akita mice from disease-causing mutations at the Ins2 and B2R loci. Here we show null mutations at the p66 and B2R loci interact with the Akita (Ins2+/C96Y) mutation, independently and in combination, inducing divergent phenotypes in the kidney. The B2R−/− mutation induces detrimental phenotypes, as judged by increased systemic and renal levels of oxidative stress, histology, and urine albumin excretion, whereas the p66-null mutation confers a powerful protection phenotype. To elucidate the mechanism(s) of the protection phenotype, we turned to our in vitro system. Experiments with cultured podocytes revealed previously unrecognized cross talk between p66 and the redox-sensitive transcription factor p53 that controls hyperglycemia-induced ROS metabolism, transcription of p53 target genes (angiotensinogen, angiotensin II type-1 receptor, and bax), angiotensin II generation, and apoptosis. RNA-interference targeting p66 inhibits all of the above. Finally, protein levels of p53 target genes were upregulated in kidneys of Akita mice but unchanged in p66-null Akita mice. Taken together, p66 is a potential molecular target for therapeutic intervention in DG.


2001 ◽  
Vol 86 (12) ◽  
pp. 5964-5972
Author(s):  
Antonis Makrigiannakis ◽  
George Coukos ◽  
Anastasia Mantani ◽  
Prokopis Prokopakis ◽  
Geoffrey Trew ◽  
...  

The Wilms’ tumor suppressor gene (WT1) encodes a zinc-finger containing transcription factor that is selectively expressed in the developing urogenital tract and functions as a tissue-specific developmental regulator. In addition to its gene-regulatory function through DNA binding properties, WT-1 also regulates transcription by formation of protein-protein complexes. These properties place WT-1 as a major regulator of cell growth and differentiation. In view of these observations, we studied WT1 mRNA and protein in human endometrial extracts and in endometrial stromal cells (ESCs) differentiating into decidual cells in vitro, by RT-PCR and Western blotting, respectively. WT1 protein expression was also studied in situ in the proliferative and the secretory phase of the menstrual cycle in the early pregnant state. Analysis by PCR of total RNA prepared from human ESCs demonstrated the presence of WT1 mRNA and four WT1 mRNA splice variants. Western blot analysis of nuclear protein extracts from ESCs yielded one immunoreactive protein of the expected size (approximately 52–54 kDa) recognized by the WT1 antibody. Immunohistochemical staining showed that WT1 protein is localized only to nuclei of human endometrial stromal cells. It remains constant in the proliferative and the secretory phase of the menstrual cycle and is increased remarkably during decidualization in early pregnancy. ESCs decidualized in vitro were investigated for WT-1 expression, which confirmed that decidualizing stimuli (E2, medroxy-progesterone-acetate, and relaxin for 12 d or cAMP and progesterone for 1–4 d) induced WT-1 mRNA (P &lt; 0.05) and increased protein levels (P &lt; 0.05). These data indicate that in humans the WT1 gene is expressed in ESCs and its mRNA and protein levels remain constant in the proliferative and the secretory phase of the menstrual cycle and that WT1 mRNA and protein expression increases significantly in ESCs when these cells differentiate into decidual cells.


2021 ◽  
Author(s):  
Xiansheng Huang ◽  
Yiqi Zhang ◽  
Wenqiang Zhu ◽  
Piaopiao Huang ◽  
Jingmei Xiao ◽  
...  

Olanzapine, an antipsychotic drug, was reported to induce hypertriglyceridemia, whereas the underlying mechanism remains incompletely understood. This study was to determine the role of apolipoprotein A5 (apoA5) in olanzapine-induced hypertriglyceridemia. In this study, 36 drug-naive and first-episode schizophrenic adult patients (aged 18-60 years) in a multi-center clinical trial (ClinicalTrials.gov NCT03451734) were enrolled. Before and after olanzapine treatment, plasma lipid and apoA5 levels were detected. Moreover, 21 female C57BL/6 J mice (8 weeks old) were divided into 3 groups (n = 7/each group): low-dose olanzapine (3 mg/kg/day), high-dose olanzapine (6 mg/kg/day) and control group. After 6 weeks, plasma glucose, lipids and apoA5 as well as hepatic apoA5 protein and mRNA expression in these animals were detected. In our study in vitro, primary mouse hepatocytes and HepG2 cells were treated with olanzapine of 25, 50, 100 μmol/L, respectively. After 24 hours, apoA5 protein and mRNA levels in hepatocytes were detected. Our study showed that olanzapine treatment significantly increased plasma triglyceride levels and decreased plasma apoA5 levels in these schizophrenic patients. A significant negative correlation was indicated between plasma triglyceride and apoA5 levels in these patients. Consistently, olanzapine dose-dependently increased plasma triglyceride levels and decreased plasma apoA5 levels in mice. Surprisingly, an elevation of hepatic apoA5 protein levels was detected in mice after olanzapine treatment, with no changes of APOA5 mRNA expression. Likewise, olanzapine increased apoA5 protein levels in hepatocytes in vitro, without changes of hepatocyte APOA5 mRNA. Therefore, our study provides the first evidence about the role of apoA5 in olanzapine-induced hypertriglyceridemia. Furthermore, plasma apoA5 reduction, resulting in hypertriglyceridemia, could be attributed to olanzapine-induced inhibition of hepatic apoA5 secretion.


2021 ◽  
Vol 12 ◽  
Author(s):  
Hiroyuki Yajima ◽  
Izuki Amano ◽  
Sumiyasu Ishii ◽  
Tetsushi Sadakata ◽  
Wataru Miyazaki ◽  
...  

Thyroid hormone (TH) plays important roles in the developing brain. TH deficiency in early life leads to severe developmental impairment in the hippocampus. However, the mechanisms of TH action in the developing hippocampus are still largely unknown. In this study, we generated 3,5,3’-tri-iodo-l-thyronine (T3)-free neuronal supplement, based on the composition of neuronal supplement 21 (NS21), to examine the effect of TH in the developing hippocampus using primary cultured neurons. Effects of TH on neurons were compared between cultures in this T3-free culture medium (-T3 group) and a medium in which T3 was added (+T3 group). Morphometric analysis and RT-qPCR were performed on 7, 10, and 14 days in vitro (DIV). On 10 DIV, a decreased dendrite arborization in -T3 group was observed. Such difference was not observed on 7 and 14 DIV. Brain-derived neurotrophic factor (Bdnf) mRNA levels also decreased significantly in -T3 group on 10 DIV. We then confirmed protein levels of phosphorylated neurotrophic tyrosine kinase type 2 (NTRK2, TRKB), which is a receptor for BDNF, on 10 DIV by immunocytochemistry and Western blot analysis. Phosphorylated NTRK2 levels significantly decreased in -T3 group compared to +T3 group on 10 DIV. Considering the role of BDNF on neurodevelopment, we examined its involvement by adding BDNF on 8 and 9 DIV. Addition of 10 ng/ml BDNF recovered the suppressed dendrite arborization induced by T3 deficiency on 10 DIV. We show that the lack of TH induces a developmental delay in primary hippocampal neurons, likely caused through a decreased Bdnf expression. Thus, BDNF may play a role in TH-regulated dendritogenesis.


2020 ◽  
Vol 318 (3) ◽  
pp. C640-C648 ◽  
Author(s):  
Xiaodan Lu ◽  
Qiang Zhang ◽  
Li Xu ◽  
Xiuying Lin ◽  
Jianhua Fu ◽  
...  

Zinc (Zn) has antioxidant effect in different types of organs and is closely associated with human health. Endometrial receptivity is one of the most important factors in the embryo implantation and development. However, the regulatory mechanism of Zn in endometrium tissue is still unclear. In the study, we found that plasma Zn level is significantly associated with female infertility, which severely affects female reproductive health. Primary endometrial stromal cells were isolated from female endometrium and cultured in the laboratory. Zn chelator TPEN treatment reduced the expression of stem cell markers CD73, CD90, and CD105 and generated reactive oxygen species in endometrial stromal cells. However, pretreatment of Zn (zinc sulfate) is able to prevent TPEN-induced oxidative stress in vitro. By transcriptional profiling and gene ontology analysis, we found that Zn increased the cellular pluripotency signaling and extracellular matrix-receptor interaction, but reduced autophagy, endocytosis, and the nitrogen metabolism pathway. We further discovered the antioxidant function of Zn through the peroxisome proliferator-activated receptor gamma coactivator 1α/nuclear factor erythroid-2-related factor signaling pathway in endometrial stromal cells. Zn supplementation may open up an effective therapeutic approach for patients with oxidative stress-related endometrial diseases.


2016 ◽  
Vol 101 (4) ◽  
pp. 1552-1561 ◽  
Author(s):  
Yong Song ◽  
Jing Fu ◽  
Min Zhou ◽  
Li Xiao ◽  
Xue Feng ◽  
...  

Abstract Context: The imbalance in cell proliferation and apoptosis is considered an important role in the pathogenesis of endometriosis, but the exact mechanisms remains unclear. A newly established signaling pathway–Hippo/Yes-associated protein (YAP) pathway plays a critical role in the proliferation and apoptosis processes. However, studies focusing on Hippo/YAP pathway and endometriosis are lacking. Objective: The objective was to explore the function of the Hippo/YAP pathway in endometriosis. Setting and Design: The expression of YAP was first investigated in endometrium of women with or without endometriosis. The role of YAP in cell proliferation and apoptosis is identified by transfection of endometrial stromal cells (ESCs) in vitro, subsequent Verteporfin treatments in eutopic ESCs in vitro, and endometriosis animal model of nude mice in vivo. Results: Our results revealed that increased expression of YAP and decreased expression of p-YAP in ectopic and eutopic endometrium compared with normal endometrium. YAP knockdown in eutopic ESCs decreased cell proliferation and enhanced cell apoptosis companied with decreased expression of TEAD1, CTGF, and B-cell lymphoma/leukemia (BCL)-2; whereas overexpression of YAP resulted in increased proliferation and decreased apoptosis of normal ESCs with increased expression of TEAD1, CTGF, and BCL-2. By chromatin immunoprecipitation qPCR CTGF and BCL-2 were identified as directly downstream target genes of YAP-TEAD1 active complex. Eutopic ESCs treated with Verteporfin revealed decreased proliferation and enhanced apoptosis whereas in endometriosis animal models of nude mice treated with Verteporfin, the size of endometriotic lesions was significantly reduced. Conclusions: Our study suggests that the Hippo/YAP-signaling pathway plays a critical role in the pathogenesis of endometriosis and should present a novel therapeutic method against endometriosis.


Sign in / Sign up

Export Citation Format

Share Document