scholarly journals The interaction between nutrition and exercise for promoting health and performance

2017 ◽  
Vol 77 (1) ◽  
pp. 1-3 ◽  
Author(s):  
Oliver C. Witard ◽  
Derek Ball

The theme of The Nutrition Society Spring Conference 2017 was on the interaction between nutrition and exercise for promoting healthy ageing, maintaining cognitive function and improving the metabolic health of the population. The importance of this theme is highlighted by the public health issues surrounding obesity, diabetes and the age-related loss of skeletal muscle mass (sarcopenia). The opening symposium provided a historical perspective of both invasive and non-invasive methodologies for measuring exercise energetics and energy balance. Data derived from these techniques underpin current understanding regarding the metabolic response to nutrition and exercise. Further symposia examined the importance of skeletal muscle for healthy ageing in older men and postmenopausal women. From a nutritional perspective, the potential for animal- v. plant-based protein sources to offset the age-related decline in muscle mass was discussed. The day concluded by discussing the link(s) between nutrition, exercise and brain function. Day 2 commenced with examples of applied equine research illustrating the link between nutrition/exercise and insulin resistance to those of a human model. The final symposium examined the combined role of nutrition and exercise in reducing risk of type 2 diabetes and dyslipidaemia. The overall conclusion from the meeting was that the interaction between diet and physical activity confers greater benefits to human health and performance than either component alone.

2021 ◽  
Vol 22 (6) ◽  
pp. 3032
Author(s):  
Anna Picca ◽  
Riccardo Calvani

Sarcopenia involves a progressive age‐related decline of skeletal muscle mass and strength/function [...]


2020 ◽  
Vol 67 (1.2) ◽  
pp. 151-157 ◽  
Author(s):  
Michiko Sato ◽  
Teruhiro Morishita ◽  
Takafumi Katayama ◽  
Shigeko Satomura ◽  
Hiroko Okuno ◽  
...  

2015 ◽  
Vol 25 (4) ◽  
pp. 249 ◽  
Author(s):  
Jan Cvecka ◽  
Veronika Tirpakova ◽  
Milan Sedliak ◽  
Helmut Kern ◽  
Winfried Mayr ◽  
...  

Aging is a multifactorial irreversible process associated with significant decline in muscle mass and neuromuscular functions. One of the most efficient methods to counteract age-related changes in muscle mass and function is physical exercise. An alternative effective intervention to improve muscle structure and performance is electrical stimulation. In the present work we present the positive effects of physical activity in elderly and a study where the effects of a 8-week period of functional electrical stimulation and strength training with proprioceptive stimulation in elderly are compared.


1993 ◽  
Vol 75 (5) ◽  
pp. 2125-2133 ◽  
Author(s):  
A. R. Coggan ◽  
A. M. Abduljalil ◽  
S. C. Swanson ◽  
M. S. Earle ◽  
J. W. Farris ◽  
...  

To examine effects of aging and endurance training on human muscle metabolism during exercise, 31P magnetic resonance spectroscopy was used to study the metabolic response to exercise in young (21–33 yr) and older (58–68 yr) untrained and endurance-trained men (n = 6/group). Subjects performed graded plantar flexion exercise with the right leg, with metabolic responses measured using a 31P surface coil placed over the lateral head of the gastrocnemius muscle. Muscle biopsy samples were also obtained for determination of citrate synthase activity. Rate of increase in P(i)-to-phosphocreatine ratio with increasing power output was greater (P < 0.01) in older untrained [0.058 +/- 0.022 (SD) W-1] and trained men (0.042 +/- 0.010 W-1) than in young untrained (0.038 +/- 0.017 W-1) and trained men (0.024 +/- 0.010 W-1). Plantar flexor muscle cross-sectional area and volume (determined using 1H magnetic resonance imaging) were 11–12% (P < 0.05) and 16–18% (P < 0.01) smaller, respectively, in older men. When corrected for this difference in muscle mass, age-related differences in metabolic response to exercise were reduced by approximately 50% but remained significant (P < 0.05). Citrate synthase activity was approximately 20% lower (P < 0.001) in older untrained and trained men than in corresponding young groups and was inversely related to P(i)-phosphocreatine slope (r = -0.63, P < 0.001). Age-related reductions in exercise capacity were associated with an altered muscle metabolic response to exercise, which appeared to be due to smaller muscle mass and lower muscle respiratory capacity of older subjects.(ABSTRACT TRUNCATED AT 250 WORDS)


1998 ◽  
Vol 26 (4) ◽  
pp. 598-602 ◽  
Author(s):  
Donald T. Kirkendall ◽  
William E. Garrett

Aging results in a gradual loss of muscle function, and there are predictable age-related alterations in skeletal muscle function. The typical adult will lose muscle mass with age; the loss varies according to sex and the level of muscle activity. At the cellular level, muscles loose both cross-sectional area and fiber numbers, with type II muscle fibers being the most affected by aging. Some denervation of fibers may occur. The combination of these factors leads to an increased percentage of type I fibers in older adults. Metabolically, the glycolytic enzymes seem to be little affected by aging, but the aerobic enzymes appear to decline with age. Aged skeletal muscle produces less force and there is a general “slowing” of the mechanical characteristics of muscle. However, neither reduced muscle demand nor the subsequent loss of function is inevitable with aging. These losses can be minimized or even reversed with training. Endurance training can improve the aerobic capacity of muscle, and resistance training can improve central nervous system recruitment of muscle and increase muscle mass. Therefore, physical activity throughout life is encouraged to prevent much of the age-related impact on skeletal muscle.


Author(s):  
Janet E. McElhaney

A decline in immune function and increased susceptibility to infection is a hallmark of ageing. Influenza is foremost among these infections with 90% of deaths occurring in older adults despite widespread vaccination programmes. Common medical conditions and mental and psychosocial health issues, as well as degree of frailty and functional dependence may all contribute to the loss of immune responsiveness to infections and vaccination. The interactions of immune senescence, persistent cytomegalovirus infection, inflammaging (chronic elevation of inflammatory cytokines), and dysregulated cytokine production pose major challenges to the development of new or more effective vaccines. This chapter describes viral infections that have the greatest impact in older adults, age-related changes in the immune system that contribute to loss of vaccine responsiveness, available vaccines against influenza and herpes zoster and the need for vaccines against other viruses, and strategies for improving vaccine effectiveness to address the public health need for ‘vaccine preventable disability’.


2018 ◽  
pp. 1-3
Author(s):  
B.C. Clark

Sarcopenia was originally conceptualized as the age-related loss of skeletal muscle mass. Over the ensuing decades, the conceptual definition of sarcopenia has changed to represent a condition in older adults that is characterized by declining muscle mass and function, with “function” most commonly conceived as muscle weakness and/or impaired physical performance (e.g., slow gait speed). Findings over the past 15-years, however, have demonstrated that changes in grip and leg extensor strength are not primarily due to muscle atrophy per se, and that to a large extent, are reflective of declines in the integrity of the nervous system. This article briefly summarizes findings relating to the complex neuromuscular mechanisms that contribute to reductions in muscle function associated with advancing age, and the implications of these findings on the development of effective therapies.


Nutrients ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 46 ◽  
Author(s):  
Maria Gammone ◽  
Graziano Riccioni ◽  
Gaspare Parrinello ◽  
Nicolantonio D’Orazio

The influence of nutrition has the potential to substantially affect physical function and body metabolism. Particular attention has been focused on omega-3 polyunsaturated fatty acids (n-3 PUFAs), which can be found both in terrestrial features and in the marine world. They are responsible for numerous cellular functions, such as signaling, cell membrane fluidity, and structural maintenance. They also regulate the nervous system, blood pressure, hematic clotting, glucose tolerance, and inflammatory processes, which may be useful in all inflammatory conditions. Animal models and cell-based models show that n-3 PUFAs can influence skeletal muscle metabolism. Furthermore, recent human studies demonstrate that they can influence not only the exercise and the metabolic response of skeletal muscle, but also the functional response for a period of exercise training. In addition, their potential anti-inflammatory and antioxidant activity may provide health benefits and performance improvement especially in those who practice physical activity, due to their increased reactive oxygen production. This review highlights the importance of n-3 PUFAs in our diet, which focuses on their potential healthy effects in sport.


2015 ◽  
Vol 25 (1) ◽  
pp. 1-2 ◽  
Author(s):  
L. Holm ◽  
A. P. Jespersen ◽  
D. S. Nielsen ◽  
M. B. Frøst ◽  
S. Reitelseder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document