scholarly journals DNA methylation of hypertension-related genes is influenced by the MTHFR 677TT genotype and riboflavin supplementation

2020 ◽  
Vol 79 (OCE2) ◽  
Author(s):  
Sophia Amenyah ◽  
Mary Ward ◽  
Amy McMahon ◽  
Jennifer Deane ◽  
Helene McNulty ◽  
...  

AbstractIntroduction:The C677T polymorphism in the folate metabolising enzyme methylenetetrahydrofolate reductase (MTHFR) is associated with hypertension. Riboflavin acts as a cofactor for MTHFR in one-carbon metabolism which generates methyl groups for utilisation in important biological reactions such as DNA methylation. Supplementation with riboflavin has previously been shown to lower blood pressure in individuals with the MTHFR 677TT genotype. The mechanism regulating this gene-nutrient interaction is currently unknown but may involve aberrant DNA methylation which has been implicated hypertension.Objectives:The aims of this study were to examine DNA methylation of hypertension-related genes in adults stratified by MTHFR C677T genotype and the effect of riboflavin supplementation on DNA methylation of these genes in individuals with the MTHFR 677TT genotype.Materials and Methods:We measured DNA methylation using pyrosequencing in a set of candidate genes associated with hypertension including angiotensin II receptor type 1 (AGTR1), G nucleotide binding protein subunit alpha 12 (GNA12), insulin-like growth factor 2 (IGF2) and nitric oxide synthase 3 (NOS3). Stored peripheral blood leukocyte samples from participants previously screened for the MTHFR C677T genotype who participated in targeted randomised controlled trials (1.6mg/d riboflavin or placebo for 16 weeks) at Ulster University were accessed for this analysis (n = 120).Results:There were significant differences in baseline average methylation between MTHFR CC and TT genotypes at NOS3 (p = 0.026) and AGTR1 (p = 0.045) loci. Riboflavin supplementation in the TT genotype group resulted in altered average methylation at IGF2 (p = 0.025) and CpG site-specific alterations at the AGTR1 and GNA12 loci.Conclusion:DNA methylation at genes related to hypertension were significantly different in individuals stratified by MTHFR genotype group. Furthermore, in MTHFR 677TT genotype individuals, there were concurrent alterations in DNA methylation at genes linked to hypertension in response to riboflavin supplementation. This is the largest study to date to demonstrate an interaction between DNA methylation of hypertension-related genes and riboflavin supplementation in adults with the MTHFR 677TT genotype. Further work using a genome-wide approach is required to better understand the role of riboflavin in altering DNA methylation in these genetically at-risk individuals.

Endocrinology ◽  
2010 ◽  
Vol 151 (7) ◽  
pp. 3363-3373 ◽  
Author(s):  
Donovan Chan ◽  
Duncan W. Cushnie ◽  
Oana R. Neaga ◽  
Andrea K. Lawrance ◽  
Rima Rozen ◽  
...  

Methylenetetrahydrofolate reductase (MTHFR) is a crucial folate pathway enzyme that contributes to the maintenance of cellular pools of S-adenosylmethionine, the universal methyl donor for several reactions including DNA methylation. Whereas Mthfr−/− BALB/c mice show growth retardation, developmental delay, and spermatogenic defects and infertility, C57BL/6 mice appear to have a less severe phenotype. In the present study, we investigated the effects of MTHFR deficiency on early germ cell development in both strains and assessed whether MTHFR deficiency results in DNA methylation abnormalities in sperm. The reproductive phenotype associated with MTHFR deficiency differed strikingly between the two strains, with BALB/c mice showing an early postnatal loss of germ cell number and proliferation that was not evident in the C57BL/6 mice. As a result, the BALB/c MTHFR-deficient mice were infertile, whereas the C57BL/6 mice had decreased sperm numbers and altered testicular histology but showed normal fertility. Imprinted genes and sequences that normally become methylated during spermatogenesis were unaffected by MTHFR deficiency in C57BL/6 mice. In contrast, a genome-wide restriction landmark genomic scanning approach revealed a number of sites of hypo- and hypermethylation in the sperm of this mouse strain. These results showing strain-specific defects in MTHFR-deficient mice may help to explain population differences in infertility among men with common MTHFR polymorphisms.


2010 ◽  
Vol 6 (3) ◽  
pp. 33
Author(s):  
Robert J Petrella ◽  

It is widely recognised that hypertension is a major risk factor for the development of future cardiovascular (CV) events, which in turn are a major cause of morbidity and mortality. Blood pressure (BP) control with antihypertensive drugs has been shown to reduce the risk of CV events. Angiotensin-II receptor blockers (ARBs) are one such class of antihypertensive drugs and randomised controlled trials (RCTs) have shown ARB-based therapies to have effective BP-lowering properties. However, data obtained under these tightly controlled settings do not necessarily reflect actual experience in clinical practice. Real-life databases may offer alternative information that reflects an uncontrolled real-world setting and complements and expands on the findings of clinical trials. Recent analyses of practice-based real-life databases have shown ARB-based therapies to be associated with better persistence and adherence rates and with superior BP control than non-ARB-based therapies. Analyses of real-life databases also suggest that ARB-based therapies may be associated with a lower risk of CV events than other antihypertensive-drug-based therapies.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Pinpin Long ◽  
Qiuhong Wang ◽  
Yizhi Zhang ◽  
Xiaoyan Zhu ◽  
Kuai Yu ◽  
...  

Abstract Background Acute coronary syndrome (ACS) is a cardiac emergency with high mortality. Exposure to high copper (Cu) concentration has been linked to ACS. However, whether DNA methylation contributes to the association between Cu and ACS is unclear. Methods We measured methylation level at > 485,000 cytosine-phosphoguanine sites (CpGs) of blood leukocytes using Human Methylation 450 Bead Chip and conducted a genome-wide meta-analysis of plasma Cu in a total of 1243 Chinese individuals. For plasma Cu-related CpGs, we evaluated their associations with the expression of nearby genes as well as major cardiovascular risk factors. Furthermore, we examined their longitudinal associations with incident ACS in the nested case-control study. Results We identified four novel Cu-associated CpGs (cg20995564, cg18608055, cg26470501 and cg05825244) within a 5% false discovery rate (FDR). DNA methylation level of cg18608055, cg26470501, and cg05825244 also showed significant correlations with expressions of SBNO2, BCL3, and EBF4 gene, respectively. Higher DNA methylation level at cg05825244 locus was associated with lower high-density lipoprotein cholesterol level and higher C-reactive protein level. Furthermore, we demonstrated that higher cg05825244 methylation level was associated with increased risk of ACS (odds ratio [OR], 1.23; 95% CI 1.02–1.48; P = 0.03). Conclusions We identified novel DNA methylation alterations associated with plasma Cu in Chinese populations and linked these loci to risk of ACS, providing new insights into the regulation of gene expression by Cu-related DNA methylation and suggesting a role for DNA methylation in the association between copper and ACS.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Louis Y. El Khoury ◽  
Shuang Fu ◽  
Ryan A. Hlady ◽  
Ryan T. Wagner ◽  
Liguo Wang ◽  
...  

Abstract Background Despite using prognostic algorithms and standard surveillance guidelines, 17% of patients initially diagnosed with low risk clear cell renal cell carcinoma (ccRCC) ultimately relapse and die of recurrent disease, indicating additional molecular parameters are needed for improved prognosis. Results To address the gap in ccRCC prognostication in the lower risk population, we performed a genome-wide analysis for methylation signatures capable of distinguishing recurrent and non-recurrent ccRCCs within the subgroup classified as ‘low risk’ by the Mayo Clinic Stage, Size, Grade, and Necrosis score (SSIGN 0–3). This approach revealed that recurrent patients have globally hypermethylated tumors and differ in methylation significantly at 5929 CpGs. Differentially methylated CpGs (DMCpGs) were enriched in regulatory regions and genes modulating cell growth and invasion. A subset of DMCpGs stratified low SSIGN groups into high and low risk of recurrence in independent data sets, indicating that DNA methylation enhances the prognostic power of the SSIGN score. Conclusions This study reports a global DNA hypermethylation in tumors of recurrent ccRCC patients. Furthermore, DMCpGs were capable of discriminating between aggressive and less aggressive tumors, in addition to SSIGN score. Therefore, DNA methylation presents itself as a potentially strong biomarker to further improve prognostic power in patients with low risk SSIGN score (0–3).


Diagnostics ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 51
Author(s):  
Nam-Yun Cho ◽  
Ji-Won Park ◽  
Xianyu Wen ◽  
Yun-Joo Shin ◽  
Jun-Kyu Kang ◽  
...  

Cancer tissues have characteristic DNA methylation profiles compared with their corresponding normal tissues that can be utilized for cancer diagnosis with liquid biopsy. Using a genome-scale DNA methylation approach, we sought to identify a panel of DNA methylation markers specific for cell-free DNA (cfDNA) from patients with colorectal cancer (CRC). By comparing DNA methylomes between CRC and normal mucosal tissues or blood leukocytes, we identified eight cancer-specific methylated loci (ADGRB1, ANKRD13, FAM123A, GLI3, PCDHG, PPP1R16B, SLIT3, and TMEM90B) and developed a five-marker panel (FAM123A, GLI3, PPP1R16B, SLIT3, and TMEM90B) that detected CRC in liquid biopsies with a high sensitivity and specificity with a droplet digital MethyLight assay. In a set of cfDNA samples from CRC patients (n = 117) and healthy volunteers (n = 60), a panel of five markers on the platform of the droplet digital MethyLight assay detected stages I–III and stage IV CRCs with sensitivities of 45.9% and 95.7%, respectively, and a specificity of 95.0%. The number of detected markers was correlated with the cancer stage, perineural invasion, lymphatic emboli, and venous invasion. Our five-marker panel with the droplet digital MethyLight assay showed a high sensitivity and specificity for the detection of CRC with cfDNA samples from patients with metastatic CRC.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 441
Author(s):  
Fanny Pineau ◽  
Davide Caimmi ◽  
Sylvie Taviaux ◽  
Maurane Reveil ◽  
Laura Brosseau ◽  
...  

Cystic fibrosis (CF) is a chronic genetic disease that mainly affects the respiratory and gastrointestinal systems. No curative treatments are available, but the follow-up in specialized centers has greatly improved the patient life expectancy. Robust biomarkers are required to monitor the disease, guide treatments, stratify patients, and provide outcome measures in clinical trials. In the present study, we outline a strategy to select putative DNA methylation biomarkers of lung disease severity in cystic fibrosis patients. In the discovery step, we selected seven potential biomarkers using a genome-wide DNA methylation dataset that we generated in nasal epithelial samples from the MethylCF cohort. In the replication step, we assessed the same biomarkers using sputum cell samples from the MethylBiomark cohort. Of interest, DNA methylation at the cg11702988 site (ATP11A gene) positively correlated with lung function and BMI, and negatively correlated with lung disease severity, P. aeruginosa chronic infection, and the number of exacerbations. These results were replicated in prospective sputum samples collected at four time points within an 18-month period and longitudinally. To conclude, (i) we identified a DNA methylation biomarker that correlates with CF severity, (ii) we provided a method to easily assess this biomarker, and (iii) we carried out the first longitudinal analysis of DNA methylation in CF patients. This new epigenetic biomarker could be used to stratify CF patients in clinical trials.


2020 ◽  
Vol 14 ◽  
Author(s):  
Mette Soerensen ◽  
Dominika Marzena Hozakowska-Roszkowska ◽  
Marianne Nygaard ◽  
Martin J. Larsen ◽  
Veit Schwämmle ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Benjamin I. Laufer ◽  
J. Antonio Gomez ◽  
Julia M. Jianu ◽  
Janine M. LaSalle

Abstract Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


2014 ◽  
Vol 22 (S3) ◽  
pp. 1419-1427 ◽  
Author(s):  
Pei-Ching Lin ◽  
Jen-Kou Lin ◽  
Chien-Hsing Lin ◽  
Hung-Hsin Lin ◽  
Shung-Haur Yang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document