scholarly journals Improved serodiagnosis of alveolar echinococcosis of humans using anin vitro-producedEchinococcus multilocularisantigen

Parasitology ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 879-888 ◽  
Author(s):  
N. MÜLLER ◽  
E. FREI ◽  
S. NUÑEZ ◽  
B. GOTTSTEIN

SUMMARYSerology is an important tool for the diagnosis of alveolar echinococcosis (AE) in humans. In order to improve serodiagnostic performance, we have developed anin vitro-producedEchinococcus mulilocularismetacestode vesicle fluid (EmVF) antigen for application in an immunoblot assay. Immunoblot analysis of EmVF revealed an abundant immunoreactive band triplet of 20–22 kDa, achieving a sensitivity of 100% based on the testing of sera from 62 pre-operative and pre-treatment cases of active and inactive AE. Thus, the EmVF-immunoblotting allowed the specific detection of cases seronegative by the Em2- and/or EmII/3–10-ELISA, usually attributable to abortive, inactive cases of AE. The specificity of the EmVF-immunoblotting did not allow discrimination between AE and cystic echinococcosis (CE) but was 100% with respect to non-Echinococcusparasitic infections or cancer malignancies. Based on the findings of this study, it is recommended that the current ELISA test combination (Em2- and II/3–10-ELISA) be complemented with EmVF-immunoblotting, allowing an improved diagnosis of both clinical and subclinical forms of AE, including those associated withE. multilocularis-specific antibody reactivities not detectable by ELISA.

Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 1838-1838
Author(s):  
Dharminder Chauhan ◽  
Madhavi Bandi ◽  
Ajita V Singh ◽  
Klaus Podar ◽  
Paul G Richardson ◽  
...  

Abstract Abstract 1838 Background and Rationale: The alkylating drug melphalan is routinely used in clinical protocols for the treatment of multiple myeloma (MM). Importantly, clinical trials in MM have effectively utilized combination of melphalan with proteasome inhibitor bortezomib and prednisolone (VMP regimen) to reduce toxicity, overcome drug resistance and enhance cytotoxicity. These findings highlight the utility of conventional alkylating agent, and importantly, provide impetus to develop conventional agents based prodrugs with a potent cytotoxic activity. In this context, pharmacological screening of alkylating oligopeptides led to the identification of a novel melphalan-containing prodrug J1 (L-melphalanyl-p-L-fluoro phenylalanine ethyl ester) - a new molecular entity with a more distinct activity profile than melphalan (Gullbo J, et al., Anticancer Drugs 2003,14:617–24; Gullbo J, et al., Invest New Drugs 2004, 22:411–20; Wickstrom M, et al., Mol Cancer Ther 2007, 6:2409–17). J1 is rapidly incorporated into the tumor cells cytoplasm, followed by intracellular hydrolysis in part mediated by aminopeptidase N (APN), resulting in a 10-fold greater release of free intracellular melphalan than exposure to melphalan at the same molar concentration (Gullbo J, et al., J Drug Target 2003,11:355–63; Wickstrom et al., Biochem Pharmacol 2010, 79(9):1281-90). In vitro studies showed a greater cytotoxic potency of J1 versus melphalan against different human solid cancers; however, its effect in MM is undefined. In the present study, we examined the anti-tumor activity of J1 in MM cells using both in vitro and in vivo model systems. Methods and Models: We utilized MM.1S, MM.1R, RPMI-8226, melphalan-resistant derivative of RPMI-8226 (LR-5), KMS12BM, and INA-6 (an IL-6 dependent) human MM cell lines, as well as purified tumor cells from patients with MM relapsing after prior therapies including lenalidomide or bortezomib. Cell viability-, proliferation-, and apoptosis assays were performed using Trypan blue, MTT, thymidine incorporation, and Annexin V/Propidium iodide staining. Signal transduction pathways were evaluated using immunoblot analysis, ELISA, and enzymologic assays. Statistical significance of data was determined using Student t test. Results: As aminopeptidase N (APN) has been shown to play a key role in conversion of J1 into melphalan in solid tumors, we first examined both expression and enzymatic activity of APN in MM cells. Immunoblot analysis showed a high expression of APN in various MM cell lines. Similarly, colorimetric analysis of APN enzymatic activity using the APN substrate L-alanine-4-nitro-anilide demonstrated elevated APN activity in MM cells. Moreover, pre-treatment of MM cells with APN inhibitor Bestatin showed a moderate, but significant blockade of J1-induced cytotoxicity in MM cells (P < 0.05; n=3). We next examined the effects of J1 in MM cells. Treatment of MM cell lines and primary patient cells for 24h significantly decreased their viability (IC50 range 0.5 – 1.0 uM; P < 0.001; n=3) without markedly affecting the viability of normal peripheral blood mononuclear cells, suggesting specific anti-MM activity and a favorable therapeutic index forJ1. Of note, the IC50 range of melphalan for MM cell lines is 10–40 uM. J1-triggered apoptosis was confirmed in MM.1R and RPMI-8226 cells, evidenced by marked increase in Annexin V+ and PI-cell population (P < 0.001, n=3). Importantly, J1induced apoptosis in MM cells even in the presence of MM bone marrow stromal cells. Mechanistic studies showed that J1-triggered apoptosis in MM cells is associated with 1) activation of caspase-7, caspase-8, caspase-9, caspase-3, and PARP; 2) induction of phospho-c-Jun and phospho-JNK, p53, and p21; 3) release of mitochondrial apoptogenic protein cytochrome-c; 4) inhibition of VEGF-induced migration of MM cells and angiogenesis; and 5) induction of DNA damage response, evidenced by increase in phospho-histone H2AX. Pre-treatment of MM cells with pan-caspase inhibitor Z-VAD-fmk attenuated J1-triggered MM cell apoptosis (P value < 0.001; n=3). Finally, treatment of tumor-bearing mice with J1 (3 mg/kg, twice a week for 2 weeks), but not vehicle alone, significantly (P < 0.008) inhibits MM tumor growth in these mice. Conclusions: Our study provides the rationale for clinical protocols evaluating J1, either alone or in combination, to improve patient outcome in MM. Disclosures: Richardson: Celgene: Membership on an entity's Board of Directors or advisory committees; Millenium: Membership on an entity's Board of Directors or advisory committees. Munshi:Millennium Pharmaceuticals: Honoraria, Speakers Bureau. Spira:Oncopeptide AB: Employment, Equity Ownership. Anderson:Millennium Pharmaceuticals: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.


1976 ◽  
Vol 81 (2) ◽  
pp. 495-506 ◽  
Author(s):  
A. Radvila ◽  
R. Roost ◽  
H. Bürgi ◽  
H. Kohler ◽  
H. Studer

ABSTRACT Lithium and excess iodide inhibit the release of thyroid hormone from preformed stores. We thus tested the hypothesis that this was due to an inhibition of thyroglobulin breakdown. Rats were pre-treated with propylthiouracil (PTU) for 3 weeks in order to deplete their thyroids of thyroglobulin. While the PTU was continued, lithium chloride (0.25 mEq./100 g weight) or potassium iodide (3 mg per rat) were injected every 12 h for 3 days. Thereafter the thyroglobulin content in thyroid gland homogenates was measured. PTU pre-treatment lowered the thyroglobulin content from 4.21 to 0.22 mg/100 mg gland. Lithium caused a marked re-accumulation of thyroglobulin to 0.60 mg/100 mg within 3 days. While iodide alone had only a borderline effect, it markedly potentiated the action of lithium and a combination of the two drugs increased the thyroglobulin content to 1.04 mg/100 mg. Thyroxine was injected into similarly pre-treated animals to suppress secretion of thyrotrophic hormone. This markedly inhibited the proteolysis of thyroglobulin and 1.3 mg/100 mg gland accumulated after 3 days. Excess iodide, given in addition to thyroxine, decreased the amount of thyroglobulin accumulated to 0.75 mg/100 mg gland. To study whether this could be explained by an inhibitory action of iodide on thyroglobulin biosynthesis, thyroid glands from animals treated with excess iodide were incubated in vitro in the presence of 0.2 mm iodide for 3 h. Iodide decreased the incorporation of radioactive leucine into total thyroidal protein and into thyroglobulin by 25 and 35 % respectively. Iodide did not inhibit protein synthesis in the kidney, liver or muscle tissue. Thus, large doses of iodide selectively inhibit thyroglobulin biosynthesis.


2020 ◽  
Vol 26 ◽  
Author(s):  
Luíza Dantas-Pereira ◽  
Edézio F. Cunha-Junior ◽  
Valter V. Andrade-Neto ◽  
John F. Bower ◽  
Guilherme A. M. Jardim ◽  
...  

: Chagas disease, Sleeping sickness and Leishmaniasis, caused by trypanosomatids Trypanosoma cruzi, Trypanosoma brucei and Leishmania spp., respectively, are considered neglected tropical diseases, and they especially affect impoverished populations in the developing world. The available chemotherapies are very limited and a search for alternatives is still necessary. In folk medicine, natural naphthoquinones have been employed for the treatment of a great variety of illnesses, including parasitic infections. This review is focused on the anti-trypanosomatid activity and mechanistic analysis of naphthoquinones and derivatives. Among all the series of derivatives tested in vitro, naphthoquinone-derived 1,2,3-triazoles were very active on T. cruzi infective forms in blood bank conditions, as well as in amastigotes of Leishmania spp. naphthoquinones containing a CF3 on a phenyl amine ring inhibited T. brucei proliferation in the nanomolar range, and naphthopterocarpanquinones stood out for their activity on a range of Leishmania species. Some of these compounds showed a promising selectivity index (SI) (30 to 1900), supporting further analysis in animal models. Indeed, high toxicity to the host and inactivation by blood components are crucial obstacles to be overcome to use naphthoquinones and/or their derivatives for chemotherapy. Multidisciplinary initiatives embracing medicinal chemistry, bioinformatics, biochemistry, and molecular and cellular biology need to be encouraged to allow the optimization of these compounds. Large scale automated tests are pivotal for the efficiency of the screening step, and subsequent evaluation of both the mechanism of action in vitro and pharmacokinetics in vivo are essential for the development of a novel, specific and safe derivative, minimizing adverse effects.


Author(s):  
Song Huang ◽  
Samuel Constant ◽  
Barbara De Servi ◽  
Marisa Meloni ◽  
Amina Saaid ◽  
...  

Abstract Purpose Nasal irrigation is an effective method for alleviating several nasal symptoms and regular seawater-based nasal irrigation is useful for maintaining nasal hygiene which is essential for appropriate functioning of the nose and for preventing airborne particles including some pollutants, pathogens, and allergens from moving further in the respiratory system. However, safety studies on seawater-based nasal irrigation are scarce. In this study, the safety and efficacy of a diluted isotonic seawater solution (Stérimar Nasal Hygiene, SNH) in maintaining nasal homeostasis were evaluated in vitro. Methods Safety was assessed by measuring tissue integrity via transepithelial electrical resistance (TEER). Efficacy was measured by mucociliary clearance (MCC), mucin secretion, and tissue re-epithelization (wound repair) assays. All assays were performed using a 3D reconstituted human nasal epithelium model. Results In SNH-treated tissues, TEER values were statistically significantly lower than the untreated tissues; however, the values were above the tissue integrity limit. SNH treatment significantly increased MCC (88 vs. 36 µm/s, p < 0.001) and mucin secretion (1717 vs. 1280 µg/ml, p < 0.001) as compared to untreated cultures. Faster wound closure profile was noted upon pre-SNH treatment as compared to classical isotonic saline solution pre-treatment (90.5 vs. 50.7% wound closure 22 h after wound generation). Conclusion SNH did not compromise the integrity of the nasal epithelium in vitro. Furthermore, SNH was effective for removal of foreign particles through MCC increase and for enhancing wound repair on nasal mucosa.


2021 ◽  
Vol 11 (8) ◽  
pp. 3637
Author(s):  
Jun-Ho Chang ◽  
Dae-Won Kim ◽  
Seong-Gon Kim ◽  
Tae-Woo Kim

Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.


Author(s):  
Bernadien M. Nijmeijer ◽  
Marta Bermejo-Jambrina ◽  
Tanja M. Kaptein ◽  
Carla M. S. Ribeiro ◽  
Doris Wilflingseder ◽  
...  

AbstractSemen is important in determining HIV-1 susceptibility but it is unclear how it affects virus transmission during sexual contact. Mucosal Langerhans cells (LCs) are the first immune cells to encounter HIV-1 during sexual contact and have a barrier function as LCs are restrictive to HIV-1. As semen from people living with HIV-1 contains complement-opsonized HIV-1, we investigated the effect of complement on HIV-1 dissemination by human LCs in vitro and ex vivo. Notably, pre-treatment of HIV-1 with semen enhanced LC infection compared to untreated HIV-1 in the ex vivo explant model. Infection of LCs and transmission to target cells by opsonized HIV-1 was efficiently inhibited by blocking complement receptors CR3 and CR4. Complement opsonization of HIV-1 enhanced uptake, fusion, and integration by LCs leading to an increased transmission of HIV-1 to target cells. However, in the absence of both CR3 and CR4, C-type lectin receptor langerin was able to restrict infection of complement-opsonized HIV-1. These data suggest that complement enhances HIV-1 infection of LCs by binding CR3 and CR4, thereby bypassing langerin and changing the restrictive nature of LCs into virus-disseminating cells. Targeting complement factors might be effective in preventing HIV-1 transmission.


2021 ◽  
Vol 22 (5) ◽  
pp. 2347
Author(s):  
Manu N. Capoor ◽  
Anna Konieczna ◽  
Andrew McDowell ◽  
Filip Ruzicka ◽  
Martin Smrcka ◽  
...  

Previously, we proposed the hypothesis that similarities in the inflammatory response observed in acne vulgaris and degenerative disc disease (DDD), especially the central role of interleukin (IL)-1β, may be further evidence of the role of the anaerobic bacterium Cutibacterium (previously Propionibacterium) acnes in the underlying aetiology of disc degeneration. To investigate this, we examined the upregulation of IL-1β, and other known IL-1β-induced inflammatory markers and neurotrophic factors, from nucleus-pulposus-derived disc cells infected in vitro with C. acnes for up to 48 h. Upon infection, significant upregulation of IL-1β, alongside IL-6, IL-8, chemokine (C-C motif) ligand 3 (CCL3), chemokine (C-C motif) ligand 4 (CCL4), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), was observed with cells isolated from the degenerative discs of eight patients versus non-infected controls. Expression levels did, however, depend on gene target, multiplicity and period of infection and, notably, donor response. Pre-treatment of cells with clindamycin prior to infection significantly reduced the production of pro-inflammatory mediators. This study confirms that C. acnes can stimulate the expression of IL-1β and other host molecules previously associated with pathological changes in disc tissue, including neo-innervation. While still controversial, the role of C. acnes in DDD remains biologically credible, and its ability to cause disease likely reflects a combination of factors, particularly individualised response to infection.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3430
Author(s):  
Vanessa Loaiza-Cano ◽  
Laura Milena Monsalve-Escudero ◽  
Manuel Pastrana Restrepo ◽  
Diana Carolina Quintero-Gil ◽  
Sergio Andres Pulido Muñoz ◽  
...  

Despite the serious public health problem represented by the diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses, there are still no specific licensed antivirals available for their treatment. Here, we examined the potential anti-arbovirus activity of ten di-halogenated compounds derived from L-tyrosine with modifications in amine and carboxyl groups. The activity of compounds on VERO cell line infection and the possible mechanism of action of the most promising compounds were evaluated. Finally, molecular docking between the compounds and viral and cellular proteins was evaluated in silico with Autodock Vina®, and the molecular dynamic with Gromacs®. Only two compounds (TDC-2M-ME and TDB-2M-ME) inhibited both ZIKV and CHIKV. Within the possible mechanism, in CHIKV, the two compounds decreased the number of genome copies and in the pre-treatment strategy the infectious viral particles. In the ZIKV model, only TDB-2M-ME inhibited the viral protein and demonstrate a virucidal effect. Moreover, in the U937 cell line infected with CHIKV, both compounds inhibited the viral protein and TDB-2M-ME inhibited the viral genome too. Finally, the in silico results showed a favorable binding energy between the compounds and the helicases of both viral models, the NSP3 of CHIKV and cellular proteins DDC and β2 adrenoreceptor.


2005 ◽  
Vol 6 (1) ◽  
pp. 91-103 ◽  
Author(s):  
John B. Githiori ◽  
Johan Höglund ◽  
Peter J. Waller

AbstractEthnomedicine is an integral part of traditional medical practices in many countries of the developing world. A large proportion of the population uses this form of treatment for primary health care and for the treatment of ailments in their livestock. Livestock is a major asset for resource-poor smallholder farmers and pastoralists throughout the world and internal parasites are recognized by these communities as having an impact on livestock health. Parasitic infections are among those infections that traditional healers confidently treat and against which an enormous variety of remedies exist. Many of these are based on the use of plant preparations. Although various methods have been used for the validation of traditional phytomedical preparations, there is a lack of standardization of these procedures. The present study is aimed at providing an overview of ethnoveterinary deworming preparations, the various methods that have been used in their validation and the future prospects for their use against helminth parasites of ruminant livestock in developing countries, with an emphasis on nematode parasites. Recommendations are made on the procedures that should be followed to conduct in vivo and in vitro assays. Fostering better interaction between traditional healers and scientists is advocated to prevent harmful overexploitation, both of local knowledge and of plant species that may have effects against nematode parasites.


Sign in / Sign up

Export Citation Format

Share Document