scholarly journals Environmental constraints influencing survival of an African parasite in a north temperate habitat: effects of temperature on development within the host

Parasitology ◽  
2011 ◽  
Vol 138 (8) ◽  
pp. 1039-1052 ◽  
Author(s):  
R. C. TINSLEY ◽  
J. E. YORK ◽  
L. C. STOTT ◽  
A. L. E. EVERARD ◽  
S. J. CHAPPLE ◽  
...  

SUMMARYThe monogenean Protopolystoma xenopodis has been established in Wales for >40 years following introduction with Xenopus laevis from South Africa. This provides an experimental system for determining constraints affecting introduced species in novel environments. Parasite development post-infection was followed at 15, 20 and 25°C for 15 weeks and at 10°C for ⩾1 year and correlated with temperatures recorded in Wales. Development was slowed/arrested at ⩽10°C which reflects habitat conditions for >6 months/year. There was wide variation in growth at constant temperature (body size differing by >10 times) potentially attributable in part to genotype-specific host-parasite interactions. Parasite density had no effect on size but host sex did: worms in males were 1·8 times larger than in females. Minimum time to patency was 51 days at 25°C and 73 days at 20°C although some infections were still not patent at both temperatures by 105 days p.i. In Wales, fastest developing infections may mature within one summer (about 12 weeks), possibly accelerated by movements of hosts into warmer surface waters. Otherwise, development slows/stops in October–April, delaying patency to about 1 year p.i., while wide variation in developmental rates may impose delays of 2 years in some primary infections and even longer in secondary infections.

PLoS ONE ◽  
2009 ◽  
Vol 4 (10) ◽  
pp. e7621 ◽  
Author(s):  
Carolyn Riddell ◽  
Sally Adams ◽  
Paul Schmid-Hempel ◽  
Eamonn B. Mallon

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sasha V. Siegel ◽  
Lia Chappell ◽  
Jessica B. Hostetler ◽  
Chanaki Amaratunga ◽  
Seila Suon ◽  
...  

Abstract Plasmodium vivax gene regulation remains difficult to study due to the lack of a robust in vitro culture method, low parasite densities in peripheral circulation and asynchronous parasite development. We adapted an RNA-seq protocol “DAFT-seq” to sequence the transcriptome of four P. vivax field isolates that were cultured for a short period ex vivo before using a density gradient for schizont enrichment. Transcription was detected from 78% of the PvP01 reference genome, despite being schizont-enriched samples. This extensive data was used to define thousands of 5′ and 3′ untranslated regions, some of which overlapped with neighbouring transcripts, and to improve the gene models of 352 genes, including identifying 20 novel gene transcripts. This dataset has also significantly increased the known amount of heterogeneity between P. vivax schizont transcriptomes from individual patients. The majority of genes found to be differentially expressed between the isolates lack Plasmodium falciparum homologs and are predicted to be involved in host-parasite interactions, with an enrichment in reticulocyte binding proteins, merozoite surface proteins and exported proteins with unknown function. An improved understanding of the diversity within P. vivax transcriptomes will be essential for the prioritisation of novel vaccine targets.


1971 ◽  
Vol 49 (2) ◽  
pp. 265-273 ◽  
Author(s):  
Gordon E. Soltice ◽  
Hisao P. Arai ◽  
Eliyahu Scheinberg

An investigation of (1) host infection and respiration, and (2) parasite development and crowding, between two Tribolium hosts and Hymenolepis diminuta has been carried out.The results show that infection of the host was influenced by temperature but not by the host's species or sex or the number of eggs ingested. The respiration of the host was observed to increase with infection and to occur at a higher rate in Tribolium castaneum and the female sex of each host. The results also indicate that parasite development was more rapid in the female host. The effects of parasitic crowding on the parasite could not be demonstrated. The results of this study are discussed in relation to current knowledge and suggestions about the mechanisms of the aforementioned effects are proposed.


2006 ◽  
Vol 2 (3) ◽  
pp. 382-384 ◽  
Author(s):  
Gisep Rauch ◽  
Martin Kalbe ◽  
Thorsten B.H Reusch

Red Queen models of host–parasite coevolution are based on genotype by genotype host–parasite interactions. Such interactions require a genotype specific host defence and, simultaneously, a genotype specific parasite infectivity. Specificity is defined here as defence or infection ability successful against only a subset of genotypes of the same species. A specific defence depends on detectable genotypic variation on the parasite side and on a host defence mechanism that differentiates between parasite genotypes. In vertebrates, the MHC-based adaptive immune system can provide such a defence mechanism, but it needs at least several days to get fully mounted. In contrast, the innate immune system is immediately ready. The trematode parasite species used here reaches the immunologically protected eye lens of its three-spined stickleback ( Gasterosteus aculeatus ) host within 24 h. Thus, it disappears too fast for the fully mounted MHC-based adaptive immune system. In a complete cross-infection experiment using five fish-families and five parasite-clones, we found for the first time fish-family by parasite-clone interactions in vertebrates, although the parasite was only exposed to the immune system for maximally one day. Such interactions require a fast genotype specific defence, suggesting the importance of other defence mechanisms than the too slow, fully mounted adaptive immune system in vertebrates.


2021 ◽  
Author(s):  
Estefanía Calvo Alvarez ◽  
Aline Crouzols ◽  
Brice Rotureau

The African trypanosome flagellum is essential in multiple aspects of the parasite development. In the mammalian infective form of this protist, FLAgellar Member 8 (FLAM8) is a large protein distributed along the entire flagellum that is suspected to be involved in host-parasite interactions. Analyses of knockdown and knockout trypanosomes demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and slender to stumpy differentiation. Functional investigations in experimental infections showed that FLAM8 -deprived trypanosomes are able to establish and maintain the infection in the blood circulation, and to differentiate into transmissible stumpy forms. However, bioluminescence imaging revealed that FLAM8 -null parasites exhibit an impaired dissemination in the extravascular compartment, especially in the skin, that is partially restored by the addition of a single rescue copy of FLAM8 . To our knowledge, FLAM8 is the first example of a flagellar protein that modulates T. brucei parasite distribution in the host tissues, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches.


2016 ◽  
Author(s):  
Laura Bankers ◽  
Peter Fields ◽  
Kyle E. McElroy ◽  
Jeffrey L. Boore ◽  
John M. Logsdon ◽  
...  

AbstractReciprocal coevolving interactions between hosts and parasites are a primary source of strong selection that can promote rapid and often population- or genotype-specific evolutionary change. These host-parasite interactions are also a major source of disease. Despite their importance, very little is known about the genomic basis of coevolving host-parasite interactions in natural populations, especially in animals. Here, we use gene expression and sequence evolution approaches to take critical steps towards characterizing the genomic basis of interactions between the freshwater snail Potamopyrgus antipodarum and its coevolving sterilizing trematode parasite, Microphallus sp., a textbook example of natural coevolution. We found that Microphallus-infected P. antipodarum exhibit systematic downregulation of genes relative to uninfected P. antipodarum. The specific genes involved in parasite response differ markedly across lakes, consistent with a scenario where population-level coevolution is leading to population-specific host-parasite interactions and evolutionary trajectories. We also used an FST-based approach to identify a set of loci that represent promising candidates for targets of parasite-mediated selection across lakes as well as within each lake population. These results constitute the first genomic evidence for population-specific responses to coevolving infection in the P. antipodarum-Microphallus interaction and provide new insights into the genomic basis of coevolutionary interactions in nature.


2005 ◽  
Vol 95 (6) ◽  
pp. 571-578 ◽  
Author(s):  
T. Danyk ◽  
M. Mackauer ◽  
D.L. Johnson

AbstractBlaesoxipha atlanis(Aldrich) is a common parasitic fly of agriculturally important grasshoppers in Canada. The suitability ofCamnula pellucida(Scudder),Melanoplus bivittatus(Say),Melanoplus packardiiScudder, andMelanoplus sanguinipes(Fabricius) as hosts was studied in the laboratory. Grasshoppers were singly-parasitized or left unparasitized and reared for 9 days.Melanoplus bivittatusandM. packardiidid not support parasite development, i.e. were non-permissive hosts. In both species, parasite larvae were melanized and encapsulated, but development proceeded further inM. packardii.Melanoplus sanguinipesandC. pellucidawere permissive host species with, respectively, 70% and 35% of the implanted larvae emerging from their hosts of which 86% and 50% developed into adults. Parasite development time was longer inC. pellucida. AdultB. atlanisdry mass varied with host species and host mass at parasitism, but not with host sex. Parasites developing inM. sanguinipeswere larger in terms of dry mass than counterparts developing inC. pellucida. In permissive species, unparasitized grasshoppers gained in body mass while parasitized insects lost mass during the 9-day observation period. In non-permissive species, all insects gained in body mass, but parasitized females gained less mass than unparasitized conspecifics. All unparasitized grasshoppers survived while 75–95% of permissive and 30–40% of non-permissive hosts died. Variation in the intensity of field parasitism among grasshopper species may be explained, at least in part, by qualitative differences in suitability between potential host species. Novel pest management strategies emphasize preservation of a small proportion of the pest population for natural enemies. Consideration of the outcome of specific host-parasite interactions should improve the understanding of grasshopper population dynamics and increase the predictive value of models that assess potential crop losses.


Sign in / Sign up

Export Citation Format

Share Document