The influence of host suitability on the range of grasshopper species utilized byBlaesoxipha atlanis(Diptera: Sarcophagidae) in the field

2005 ◽  
Vol 95 (6) ◽  
pp. 571-578 ◽  
Author(s):  
T. Danyk ◽  
M. Mackauer ◽  
D.L. Johnson

AbstractBlaesoxipha atlanis(Aldrich) is a common parasitic fly of agriculturally important grasshoppers in Canada. The suitability ofCamnula pellucida(Scudder),Melanoplus bivittatus(Say),Melanoplus packardiiScudder, andMelanoplus sanguinipes(Fabricius) as hosts was studied in the laboratory. Grasshoppers were singly-parasitized or left unparasitized and reared for 9 days.Melanoplus bivittatusandM. packardiidid not support parasite development, i.e. were non-permissive hosts. In both species, parasite larvae were melanized and encapsulated, but development proceeded further inM. packardii.Melanoplus sanguinipesandC. pellucidawere permissive host species with, respectively, 70% and 35% of the implanted larvae emerging from their hosts of which 86% and 50% developed into adults. Parasite development time was longer inC. pellucida. AdultB. atlanisdry mass varied with host species and host mass at parasitism, but not with host sex. Parasites developing inM. sanguinipeswere larger in terms of dry mass than counterparts developing inC. pellucida. In permissive species, unparasitized grasshoppers gained in body mass while parasitized insects lost mass during the 9-day observation period. In non-permissive species, all insects gained in body mass, but parasitized females gained less mass than unparasitized conspecifics. All unparasitized grasshoppers survived while 75–95% of permissive and 30–40% of non-permissive hosts died. Variation in the intensity of field parasitism among grasshopper species may be explained, at least in part, by qualitative differences in suitability between potential host species. Novel pest management strategies emphasize preservation of a small proportion of the pest population for natural enemies. Consideration of the outcome of specific host-parasite interactions should improve the understanding of grasshopper population dynamics and increase the predictive value of models that assess potential crop losses.

2021 ◽  
Vol 30 (2) ◽  
pp. 163-172
Author(s):  
Deanna Zembrzuski ◽  
Derek A. Woller ◽  
Larry Jech ◽  
Lonnie R. Black ◽  
K. Chris Reuter ◽  
...  

When given a choice, most animals will self-select an optimal blend of nutrients that maximizes growth and reproduction (termed “intake target” or IT). For example, several grasshopper and locust species select a carbohydrate-biased IT, consuming up to double the amount of carbohydrate relative to protein, thereby increasing growth, survival, and migratory capacity. ITs are not static, and there is some evidence they can change through ontogeny, with activity, and in response to environmental factors. However, little research has investigated how these factors influence the relative need for different nutrients and how subsequent shifts in ITs affect the capacity of animals to acquire an optimal diet in nature. In this study, we determined the ITs of 5th instar (final juvenile stage) Melanoplus sanguinipes (Fabricius, 1798), a prevalent crop and rangeland grasshopper pest in the United States, using two wild populations and one lab colony. We simultaneously collected host plants to determine the nutritional landscapes available to the wild populations and measured the performance of the lab colony on restricted diets. Overall, we found that the diet of the wild populations was more carbohydrate-biased than their lab counterparts, as has been found in other grasshopper species, and that their ITs closely matched their nutritional landscape. However, we also found that M. sanguinipes had the lowest performance metrics when feeding on the highest carbohydrate diets, whereas more balanced diets or protein-rich diets had higher performance metrics. This research may open avenues for studying how management strategies coincide with nutritional physiology to develop low-dose treatments specific to the nutritional landscape for the pest of interest.


Parasitology ◽  
2011 ◽  
Vol 138 (8) ◽  
pp. 1039-1052 ◽  
Author(s):  
R. C. TINSLEY ◽  
J. E. YORK ◽  
L. C. STOTT ◽  
A. L. E. EVERARD ◽  
S. J. CHAPPLE ◽  
...  

SUMMARYThe monogenean Protopolystoma xenopodis has been established in Wales for >40 years following introduction with Xenopus laevis from South Africa. This provides an experimental system for determining constraints affecting introduced species in novel environments. Parasite development post-infection was followed at 15, 20 and 25°C for 15 weeks and at 10°C for ⩾1 year and correlated with temperatures recorded in Wales. Development was slowed/arrested at ⩽10°C which reflects habitat conditions for >6 months/year. There was wide variation in growth at constant temperature (body size differing by >10 times) potentially attributable in part to genotype-specific host-parasite interactions. Parasite density had no effect on size but host sex did: worms in males were 1·8 times larger than in females. Minimum time to patency was 51 days at 25°C and 73 days at 20°C although some infections were still not patent at both temperatures by 105 days p.i. In Wales, fastest developing infections may mature within one summer (about 12 weeks), possibly accelerated by movements of hosts into warmer surface waters. Otherwise, development slows/stops in October–April, delaying patency to about 1 year p.i., while wide variation in developmental rates may impose delays of 2 years in some primary infections and even longer in secondary infections.


2012 ◽  
Vol 90 (11) ◽  
pp. 1351-1358 ◽  
Author(s):  
R.S. Luna ◽  
A. Duarte ◽  
F.W. Weckerly

Scaling relationships between body mass and gut capacity are valuable to predicting digestive efficiency. Interspecific scaling relationships between body mass and gut capacity have consistently estimated a slope of 1.0; however, intraspecific scaling relationships between body mass and gut capacity have been highly variable. We examined the influence of demands of growth and production on scaling relationships of body mass and rumen–reticulum characteristics in white-tailed deer ( Odocoileus virginianus (Zimmermann, 1780)) because little is known about how juvenile and subadult ruminants accommodate increased digesta masses. We sampled 108 animals over a 2-year period and assessed the influence of body mass, time of kill, crude protein (%), and acid detergent fiber (%) in the rumen, lactation, sex, and back fat on rumen–reticulum organ mass, rumen–reticulum capacity, wet mass of the digesta, and the dry mass of the digesta. Juvenile and subadult white-tailed deer had rumen–reticulum organ masses, capacity, and digesta masses that were similar to adults because body mass and rumen–reticulum scaling relationships all had scalars similar to 1.0. Thus, under the confines of our study, ontogeny plays only a minor role in the physiological characteristics of the rumen–reticulum and the scaling relationships of body mass and rumen–reticulum capacity.


2017 ◽  
Vol 75 (3) ◽  
pp. 1071-1079 ◽  
Author(s):  
Samantha Bui ◽  
Elina Halttunen ◽  
Agnes M Mohn ◽  
Tone Vågseth ◽  
Frode Oppedal

Abstract With different ecological characteristics amongst salmonid species, their response to parasitic infestation is likely to vary according to their spatial and temporal overlap with the parasite. This study investigated the host–parasite interactions amongst three species of salmonids and the ectoparasitic salmon louse, Lepeophtheirus salmonis. To determine any variation in infestation parameters amongst salmonids, single population groups of Atlantic salmon (Salmo salar), chinook salmon (Onchorhynchus tshawytscha), and previously-infested and naïve sea trout (Salmo trutta) were exposed to a controlled infestation challenge. We found that chinook salmon and both sea trout groups were more susceptible to acquiring lice than Atlantic salmon. Behavioural responses during infestation were more pronounced in Atlantic and chinook salmon. Parasite development was similar in lice attached to Atlantic salmon and sea trout, but hindered on chinook salmon. At 16 days post-infestation, chinook salmon had reduced lice loads to the same level as Atlantic salmon, whilst sea trout retained their lice. These results demonstrate differences in interactions with L. salmonis amongst these species, and highlight the vulnerability of sea trout to infestation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yusaku Hashimoto ◽  
Takahiro Imaizumi ◽  
Sawako Kato ◽  
Yoshinari Yasuda ◽  
Takuji Ishimoto ◽  
...  

AbstractThe influence of body mass or metabolic capacity on the association between alcohol consumption and lower risks of developing chronic kidney disease (CKD) is not fully elucidated. We examined whether the body mass index (BMI) affects the association between drinking alcohol and CKD. We defined CKD as an estimated glomerular filtration rate decline < 60 mL/min/1.73 m2 and/or positive proteinuria (≥ 1+). Participants were 11,175 Japanese individuals aged 40–74 years without baseline CKD who underwent annual health checkups. Daily alcohol consumption at baseline was estimated using a questionnaire, and the participants were categorized as “infrequent (occasionally, rarely or never),” “light (< 20 g/day),” “moderate (20–39 g/day),” and “heavy (≥ 40 g/day).” Over a median 5-year observation period, 936 participants developed CKD. Compared with infrequent drinkers, light drinkers were associated with low CKD risks; adjusted hazard ratios (95% confidence intervals) were 0.81 (0.69–0.95). Stratified by BMI (kg/m2), moderate drinkers in the low (< 18.5), normal (18.5–24.9), and high (≥ 25.0) BMI groups had adjusted hazard ratios (95% confidence intervals) of 3.44 (1.60–7.42), 0.75 (0.58–0.98), and 0.63 (0.39–1.04), respectively. Taken together, the association between alcohol consumption and CKD incidence was not the same in all the individuals, and individual tolerance must be considered.


2020 ◽  
Vol 46 (1) ◽  
pp. 9-13
Author(s):  
Ricardo Nunes Cabral ◽  
Waldir Aparecido Marouelli ◽  
Adalberto C. Café-Filho

ABSTRACT Verticillium wilt in eggplants is a root disease of difficult control. In this study, we report the relationship between soil water availability and the disease intensity in order to identify management strategies that are unfavourable to the pathogen and capable of reducing the disease progression and the damage caused by it. Four irrigation management strategies were compared in soil infested or not infested with Verticillium dahliae, which consisted of: irrigating when the available soil moisture was maintained at 90% (WA90%), 55% (WA55%) and 20% (WA20%) during the entire growing cycle, and kept at 20% in the vegetative stage, and at 90% in the production stage (WA20-90%). Experimental design was in randomized blocks, including eight treatments in factorial arrangement (4x2) and three replicates. The management strategy WA20-90% led to a significant reduction in the disease severity and in the extent of xylem colonization by the pathogen. The dry mass of plants in infested soil was 12% lower than that of control treatments and was higher with the irrigation strategy WA90% than with WA55% or WA20%. The strategy WA20-90% was efficient in reducing the disease with no significant reduction in dry mass.


2021 ◽  
Author(s):  
◽  
Maren Preuss

<p>Red algal parasites have evolved independently over a 100 times and grow only on other red algal hosts. Most parasites are closely related to their host based on the similarity of their reproductive structures. Secondary pit connections between red algal parasites and their hosts are used to transfer parasite organelles and nuclei into host cells. Morphological and physiological changes in infected host cells have been observed in some species. Parasite mitochondrial genomes are similar in size and gene content to free-living red algae whereas parasite plastids are highly reduced. Overall, red algal parasites are poorly studied and thus the aim of this study was to increase the general knowledge of parasitic taxa with respect to their diversity, evolutionary origin, development, physiology, and organelle evolution. Investigation of the primary literature showed that most species descriptions of red algal parasites were poor and did not meet the criteria for defining a parasitic relationship. This literature study also revealed a lack of knowledge of many key parasitic processes including early parasite development, host cell “control”, and parasite origin. Many of these poorly studied research areas were addressed in this thesis. Phylogenetic analyses, using a range of markers from all three genomes (cpDNA: rbcL, nDNA: actin, LSU rRNA; mtDNA: cox1), showed different patterns of phylogenetic relationships for the four new red algal parasites and their hosts. The parasites Phycodrys novae-zelandiophila sp. nov. and Vertebrata aterrimophila sp. nov. closest relative is its host species. Cladhymenia oblongifoliophila sp. nov. closest relative is its host species based on nuclear and mitochondrial markers whereas the plastid markers group the parasite with Cladhymenia lyallii, suggesting that the parasite plastid was acquired when previously parasitizing C. lyallii. Judithia parasitica sp. nov. grows on two Blastophyllis species but the parasites’ closest relative is the non-host species Judithia delicatissima. Developmental studies of the parasite Vertebrata aterrimophila, showed a unique developmental structure (“trunk-like” cell) not known in other parasites, plus localised infection vi and few changes in infected host cells. High-throughput-sequencing revealed mitochondrial genomes of similar size, gene content and order in the parasite Pterocladiophila hemisphaerica to its host Pterocladia lucida, and a reduced non-photosynthetic plastid in the parasite. Mitochondrial (mt) and plastid (cp) genome phylogenies placed Pterocladiophila hemisphaerica on long branches, either as sister to Ceramiales (mt) or Gracilariales (cp). Further analyses, filtering non-elevated plastid genes grouped the parasite neither with the Gracilariales (mt) or Gelidiales (cp) on shorter branches but without support. Nuclear phylogeny grouped P. hemisphaerica as sister to the Gelidiales and other red algal orders and was the only phylogenetic relationship with support. Investigations of photosystem II capacity using PAM fluorometry, and quantifying chlorophyll a content in three pigmented parasites, showed different host nutrient dependencies. Rhodophyllis parasitica and Vertebrata aterrimophila are not able to photosynthesize and are fully dependent on host nutrients. Pterocladiophila hemisphaerica is able to photosynthesize independently, even though it has a reduced non-photosynthetic plastid genome, and therefore is only partially dependent on its host. This study advances our current understanding of red algal parasites and highlights many possibilities for future research including genome evolution and understanding parasite diversity.</p>


2012 ◽  
Vol 87 (4) ◽  
pp. 400-408 ◽  
Author(s):  
E.A. Martínez-Salazar ◽  
T. Escalante ◽  
M. Linaje ◽  
J. Falcón-Ordaz

AbstractSpecies distribution modelling has been a powerful tool to explore the potential distribution of parasites in wildlife, being the basis of studies on biogeography.Vexillataspp. are intestinal nematodes found in several species of mammalian hosts, such as rodents (Geomyoidea) and hares (Leporidae) in the Nearctic and northern Neotropical regions. In the present study, we modelled the potential distribution ofVexillataspp. and their hosts, using exclusively species from the Geomyidae and Heteromyidae families, in order to identify their distributional patterns. Bioclimatic and topographic variables were used to identify and predict suitable habitats forVexillataand its hosts. Using these models, we identified that temperature seasonality is a significant environmental factor that influences the distribution of the parasite genus and its host. In particular, the geographical distribution is estimated to be larger than that predicted for its hosts. This suggests that the nematode has the potential to extend its geographical range and also its spectrum of host species. Increasing sample size and geographical coverage will contribute to recommendations for conservation of this host–parasite system.


Parasitology ◽  
2016 ◽  
Vol 144 (5) ◽  
pp. 692-697 ◽  
Author(s):  
KARINA D. RIVERA-GARCÍA ◽  
CÉSAR A. SANDOVAL-RUIZ ◽  
ROMEO A. SALDAÑA-VÁZQUEZ ◽  
JORGE E. SCHONDUBE

SUMMARYChanges in the specialization of parasite–host interactions will be influenced by variations in host species composition. We evaluated this hypothesis by comparing the composition of bats and bat flies within a roost cave over one annual. Five bat and five bat fly species occupied the cave over the course of the study. Bat species composition was 40% different in the rainy season compared with the dry–cold and dry–warm seasons. Despite the incorporation of three new bat species into the cave during the rainy season, bat fly species composition was not affected by seasonality, since the bats that arrived in the rainy season only contributed one new bat fly species at a low prevalence. Bat–bat fly ecological networks were less specialized in the rainy season compared with the dry–cold and dry–warm seasons because of the increase of host overlap among bat fly species during this season. This study suggests that seasonality promote: (1) differences in host species composition, and (2) a reduction in the specialization of host–parasite ecological networks.


Sign in / Sign up

Export Citation Format

Share Document