Effect of Naptalam on Chloramben Toxicity, Uptake, Translocation, and Metabolism in Cucumber (Cucumis sativus)

Weed Science ◽  
1991 ◽  
Vol 39 (1) ◽  
pp. 27-32
Author(s):  
Larry D. Knerr ◽  
Herbert J. Hopen ◽  
Nelson E. Balke

Laboratory studies demonstrated that naptalam safens cucumber against the phytotoxic effects of chloramben. In petri dish studies, cucumber seedlings grown from seeds exposed to chloramben plus naptalam had greater shoot growth, root growth, and dry weight than seedlings grown from seeds exposed to chloramben alone. Naptalam also partially reversed the reduction in dry weight of various plant parts caused by exposure of roots of hydroponically grown seedlings to chloramben. More radioactivity from root-applied14C-chloramben remained in cucumber roots and less was translocated to shoots with a14C-chloramben plus naptalam treatment than with a14C-chloramben alone treatment. Naptalam appeared to influence chloramben metabolism. In various plant parts, concentrations of chloramben and its metabolites differed between the two treatments.

1994 ◽  
Vol 119 (5) ◽  
pp. 964-970 ◽  
Author(s):  
Eleazar Reyes ◽  
Paul H. Jennings

Roots of `Golden Girl' squash (Cucurbita pepo var. melopepo) and `Encore' cucumber (Cucumis sativus L.), 4- and 3-days-old, respectively, were exposed to 2, 6, 10, and 15C for 24, 48, 96, 144, and 192 hours to compare the sensitivity to chilling temperatures and the subsequent recovery at more favorable temperatures. Seedlings were more sensitive to chilling at 2 and 6C when measured by their ability to resume growth when returned to 26C. Root growth decreased after 48 hours of chilling. Seedlings stressed at 10 and 15C were able to continue root growth at these temperatures and when returned to 26C. However, seedlings at 10C exhibited root-tip browning in both crop species, suggesting disfunction in metabolic pathways that were repressed in seedlings growing at 2C where those symptoms were not present. Effects on root dry weight occurred in the first 24 hours at all temperatures studied. After 96 hours of treatment, seedlings grown at 2 and 6C were irreversibly damaged, as evidenced by their inability to resume growth when returned to 26C. Leakage of electrolytes from squash and cucumber roots increased after 48 hours at 2C. Potassium, Na+, and PO4-2 were lost in greater amounts than Mg+2, Cl-, and SO4-2. No difference in ionic leakage occurred at 10 and 15C, and Ca+2 leakage was not detected at any chilling stress temperature.


2015 ◽  
Vol 33 (3) ◽  
pp. 137-141
Author(s):  
Bruce R. Roberts ◽  
Chris Wolverton ◽  
Samantha West

The efficacy of treating soilless substrate with a commercial humectant was tested as a means of suppressing drought stress in 4-week-old container-grown Zinnia elegans Jacq. ‘Thumbelina’. The humectant was applied as a substrate amendment at concentrations of 0.0, 0.8, 1.6 and 3.2% by volume prior to withholding irrigation. An untreated, well-watered control was also included. The substrate of treated plants was allowed to dry until the foliage wilted, at which time the plants were harvested and the following measurements taken: number of days to wilt (DTW), xylem water potential (ψx), shoot growth (shoot dry weight, leaf area) and root growth (length, diameter, surface area, volume, dry weight). For drought-stressed plants grown in humectant-treated substrate at concentrations of 1.6 and 3.2%, DTW increased 25 and 33%, respectively. A linear decrease in ψx was observed as the concentration of humectant increased from 0.0 to 3.2%. Linear trends were also noted for both volumetric moisture content (positive) and evapotranspiration (negative) as the concentration of humectant increased. For non-irrigated, untreated plants, stress inhibited shoot growth more than root growth, resulting in a lower root:shoot ratio. For non-irrigated, humectant-treated plants, the length of fine, water-absorbing roots increased linearly as humectant concentration increased from 0.0 to 3.2%. Using humectant-amended substrates may be a management option for mitigating the symptoms of drought stress during the production of container-grown bedding plants such as Z. elegans.


2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


1981 ◽  
Vol 32 (2) ◽  
pp. 257 ◽  
Author(s):  
DJ Reuter ◽  
AD Robson ◽  
JF Loneragan ◽  
DJ Tranthim-Fryer

Effects of severe and moderate copper deficiency on the development of leaves and lateral branches, on the distribution of dry weight within the plant, and on seed yield of Seaton Park subterranean clover were assessed as part of three glasshouse experiments. Copper deficiency markedly depressed top and root growth without producing any distinctive symptoms. It retarded phasic development by delaying development of leaves and lateral branches, senescence of plant parts, and flowering: it also depressed the proportion of stem plus petiole in plant tops and decreased internode elongation, pollen fertility and the number of burrs and seeds formed. As a result of its effect in delaying flowering, copper deficiency would depress seed production particularly strongly when low soil water supply shortens the growing season. The need for suitable procedures for diagnosing copper deficiency is emphasized by the lack of specific plant symptoms in this species.


2006 ◽  
Vol 57 (7) ◽  
pp. 761 ◽  
Author(s):  
Eun-Young Choi ◽  
Ann McNeill ◽  
David Coventry ◽  
James Stangoulis

Within the semi-arid region of south-eastern Australia, high levels of subsoil boron (B) in alkaline soil can limit production of dryland crops. The aim of this research was to investigate the whole plant response to a range of subsoil-extractable B concentrations for a number of crop and weed species common to agricultural areas of South Australia. Specifically, the objectives were to determine (a) the morphological response of the entire root system to high subsoil B and (b) the available B concentrations in subsoil critical for expression of shoot traits commonly used in selection of B tolerance. Barley grass (Hordeum glaucum L.), crop barley (Hordeum vulgare) variety Clipper and breeders’ line VB9953, fababean (Vicia faba var. Fjiord), Lincoln weed (Diplotaxis tenuifolia L.), prickly lettuce (Lactuca serriola), and evening primrose (Oenothera stricta L.) were grown in sealed PVC cylinders (500 mm deep by 150 mm diam.) containing a sandy soil. The concentration of extractable B in the topsoil (0–0.20 m), considered non-toxic, was 0.5 mg/kg for all cylinders but a range of B treatments (0.5, 2.4, 4.3, 6.8, or 12.2 mg/kg) was applied directly to the subsoil (0.30–0.50 m). Increasing the concentration of extractable B in the subsoil decreased root dry weight in this region, but did not reduce water use from subsoil by barley grass or evening primrose. The response of the roots in the topsoil and subsequent responses in the shoot also differed among species. Symptoms of B toxicity in shoots of all the species were observed at subsoil-extractable B concentrations of 12.2 mg/kg and at lower concentrations in some of the crop and weed species. Shoot growth, total water use, and root growth in topsoil of Clipper and Lincoln weed were severely impaired by high subsoil-extractable B, as was topsoil root growth in evening primrose, with the reduction in the weed species being mostly associated with a decrease in taproot dry weight. Barley grass, VB9953, evening primrose, and to a lesser extent fababean and prickly lettuce, maintained shoot growth at all subsoil-extractable B concentrations, despite a reduction in subsoil water use by VB9953. Prickly lettuce and VB9953 also sustained root growth in the topsoil whilst fababean and barley grass increased root growth in the topsoil in response to high subsoil extractable B. There was no direct relationship between the quantity of B accumulated in shoots and detrimental effects on growth. Furthermore, there appeared to be no direct relationship between water uptake and B uptake since irrespective of the effect of subsoil B on either subsoil or total water use, shoot B concentration increased in all the species/genotypes as subsoil B increased. The degree to which plants were deemed to exhibit tolerance was, therefore, highly dependent upon the trait used for assessment. One suggestion in the current study is that shoot dry matter in B toxic soil can be a consistent parameter for considering varieties for tolerance to B toxicity.


1992 ◽  
Vol 70 (7) ◽  
pp. 1488-1492 ◽  
Author(s):  
Peter Nosko ◽  
Kenneth A. Kershaw

Week-old white spruce seedlings were grown for 7 days at pH 4.5, 3.9, 3.65, or 3.5 using a continuous flow system to deliver experimental solutions. At each pH, seedlings received either no aluminum or 10 μM Al, a concentration 2 – 3 orders of magnitude lower than the reported minimum Al concentrations required to induce toxicity symptoms in seedlings of a variety of tree species. In – Al treatments, root elongation was reduced at pH 3.9 and root dry weight was reduced at pH 3.5, compared with seedlings grown at pH 4.5. Exposure to 10 μM Al caused further reduction of root growth, the magnitude of which increased as pH decreased. This suggests that seedling root growth was affected by the increased proportion of the total Al existing as phytotoxic Al3+ at lower pH values or by an interaction of Al3+ and H+. Neither pH nor Al affected shoot growth. Both acidity and Al could limit natural regeneration of white spruce by preventing seedling establishment. Key words: aluminum toxicity, soil acidity, forest decline, white spruce, Picea glauca, forest regeneration.


2011 ◽  
Vol 77 (1) ◽  
pp. 27-33 ◽  
Author(s):  
Elżbieta Sacała ◽  
Edward Grzyś ◽  
Anna Demczuk ◽  
Zofia Spiak

Plants exposed to osmotic stress exhibit changes in their physiology and metabolism. In general, osmotic stress reduces water availability and causes nutritional imbalance in plants. In the present study, we compared the response of cucumber (<em>Cucumis sativus</em> L. var. Władko F-1) to ionic (100 mmol•dm-3 NaCl) and osmotic stress (10% PEG 6000). Both stress factors reduced significantly fresh and dry weight of 7-day-old cucumber seedlings. Under PEG treatment reduction of cucumber dry mass was lesser than in fresh mass, whereas under salt stress decrease in dry weight of cucumber shoots was more pronounced than in fresh mass. Salt stress caused severe decrease in nitrate concentration and activity of nitrate reductase (NR). In cotyledons nitrate content declined to 17% of the control and similar reduction in NR activity was observed. In the roots, observed changes were not so drastic but there was also strong interaction between reduction in nitrate content and NR activity. Under 10% PEG both nitrate concentration and NR activity in cucumber roots were significantly higher in comparison to control plants. In cotyledons NR activity was significantly lower than in control plants, while decrease in nitrate content was not statistically significant. Phosphate concentration did not change significantly in cucumber cotyledons but increased in roots treated both NaCl (32% increase) and PEG (53% increase). Similar tendencies were observed in acid phosphatase activity. Obtained results indicated that osmotic and salt stresses evoke differential responses, particularly in growth reduction and nitrogen metabolism in cucumber seedlings.


1983 ◽  
Vol 13 (4) ◽  
pp. 633-639 ◽  
Author(s):  
Z. C. Tang ◽  
T. T. Kozlowski

Flooding of soil for 45 days severely inhibited growth of 115-day-old Pinusbanksiana Lamb, and P. resinosa Ait. seedlings, with significant effects apparent within 15 days after initiation of flooding. Both species adapted poorly to flooding of soil but P. banksiana was more adversely affected than P. resinosa as shown by earlier and more drastic reduction of growth in the former species. In both species flooding decreased the rate of height growth, production of secondary needles, dry weight increment, and relative growth rates of various plant parts. Root growth of both species was reduced more than shoot growth. The reduction in dry weight increment of root systems of both species reflected arrested branching and elongation of roots as well as decay of roots, mainly the very small nonwoody roots. Flooding slightly stimulated ethylene production by submerged stems.


2011 ◽  
Vol 62 (11) ◽  
pp. 972 ◽  
Author(s):  
Qifu Ma ◽  
Richard Bell ◽  
Ross Brennan

In the agricultural lands of south-western Australia, salinity severely affects about 1 million hectares, and there is also widespread occurrence of potassium (K) deficiency. This study investigated whether the effects of sodium (Na) on crop K nutrition vary with plant salt sensitivity. In a glasshouse experiment with loamy sand, two barley cultivars (Hordeum vulgare L. cv. Gairdner, salt sensitive, and cv. CM72, salt tolerant) and one wheat cultivar (Triticum aestivum L. cv. Wyalkatchem, salt tolerant) were first grown in soil containing 30 mg extractable K/kg for 4 weeks to create mildly K-deficient plants, then subjected to Na (as NaCl) and additional K treatments for 3 weeks. Although high Na (300 mg Na/kg) reduced leaf numbers, moderate Na (100 mg Na/kg) hastened leaf development in barley cultivars but not in wheat. In the salt-tolerant CM72, moderate Na also increased tiller numbers, shoot dry weight and Na accumulation, but not root growth. The positive effect of moderate Na on shoot growth in CM72 was similar to that of adding 45 mg K/kg. Root growth relative to shoot growth was enhanced by adequate K supply (75 mg K/kg) compared with K deficiency, but not by Na supply. Soil Na greatly reduced the K/Na and Ca/Na ratios in shoots and roots, while additional K supply increased the K/Na ratio with little effect on the Ca/Na ratio. The study showed that the substitution of K by Na in barley and wheat was influenced not only by plant K status, but by the potential for Na uptake in roots and Na accumulation in shoots, which may play a major role in salt tolerance. The increased growth in shoots but not roots of salt-tolerant CM72 in response to moderate Na and the greater adverse effect of soil K deficiency on roots than shoots in all genotypes would make the low-K plants more vulnerable to saline and water-limited environments.


Sign in / Sign up

Export Citation Format

Share Document