scholarly journals Phase transformation under beam-target interactions during high-intensity pulsed ion beam irradiation at low pressure

2011 ◽  
Vol 29 (3) ◽  
pp. 283-289 ◽  
Author(s):  
X.P. Zhu ◽  
F.G. Zhang ◽  
Y. Tang ◽  
M.K. Lei

AbstractNitrides and/or carbonitrides formation of high efficiency was found on titanium target under irradiation of high-intensity pulsed ion beam (HIPIB) with a few shots at a low pressure of 10−2 Pa order, which is extraordinary in comparison with conventional thermo-chemical diffusion process such as gas nitriding and/or carbonitriding of metals necessarily heated at high temperatures during a processing time of hours. The underlying mechanism of the nitrides and carbonitrides formation on titanium targets was explored by a comparative study on three typical HIPIB sources, i.e., TEMP-6, TEMP-4M, and ETIGO-II, varying the irradiation intensity within several J/cm2 per shot of a 60–70 ns pulse duration and the shot number of similar ion species. It is revealed that ambient gases and ion source material are the main sources providing the nitrogen and carbon species for the phase transformation on titanium target at the low pressures, whereas the ion species of HIPIB composition is negligible at a low implantation dose of 1013–1014 ions/cm2. The adsorbed gaseous species, the deposited layer of the ion source material, and in-situ formed compound top layer from reactions between ablation plasma and the ambient species during HIPIB irradiation, can be effectively incorporated into the irradiated target surfaces under a controlled HIPIB-target interaction.

1974 ◽  
Vol 13 (S1) ◽  
pp. 423
Author(s):  
Toshinori Takagi ◽  
Isao Yamada ◽  
Junzo Ishikawa ◽  
Fumimichi Sano ◽  
Toru Kishi

2017 ◽  
Vol 35 (4) ◽  
pp. 587-596 ◽  
Author(s):  
X.P. Zhu ◽  
L. Ding ◽  
Q. Zhang ◽  
Yu. Isakova ◽  
Y. Bondarenko ◽  
...  

AbstractHigh-intensity pulsed ion beam (HIPIB) technology is developed as an advanced manufacturing method for components with improved wear, corrosion and/or fatigue performance, etc. Robust HIPIB equipment with stable repetitive operation, long-lifetime, and easy maintenance are desired for industrial applications, on which stability of ion beam parameters is critical to achieve consistent result of reproducibility. Here, magnetically insulated ion diodes (MIDs) as ion source with durable graphite anode are investigated in a simple self-magnetic field configuration under repetitive operation. Influence of background pressure on ion beam generation and transportation is emphasized since ion beam sources were intrinsically a vacuum-based system. Comparative experiments were conducted on two types of HIPIB equipment, that is, TEMP-6 and TEMP-4M, differing in vacuum packages where turbo-molecular pump or oil diffusion pump was used. Both the HIPIB equipments are operated on a bipolar pulse mode, that is, a first negative pulse of 150–200 kV with pulse duration 450–500 ns to generate anode plasma on explosive electron emission, and a second positive pulse of 200–250 kV with 120 ns to accelerate the ions. Ion beam energy density up to 8 J/cm2 is achievable using MIDs of geometrical focusing configuration, and the total energy, energy density distribution along cross-section, deflection and divergence, and charge neutralization of the ion beams are assessed under background pressures in a wide range of two orders of magnitude, that is, 1–100 mPa. No appreciable change in the parameters is observed up to 50 mPa, and merely a slight increase in the beam deflection from about ±3 mm to about ±4 mm at the focal point over 50 mPa. The stability of ion beam at the varied pressure is mainly facilitated by the higher pressure up to several Pa in anode–cathode gap during plasma generation and good neutralizing effect for ion beam transportation.


2010 ◽  
Vol 28 (3) ◽  
pp. 429-436 ◽  
Author(s):  
J.P. Xin ◽  
X.P. Zhu ◽  
M.K. Lei

AbstractEnergy deposition by high-intensity pulsed ion beam into a metal target has been studied with time-of-flight (TOF) of ions which can be related to the original ion kinetic energy E0 and the ion mass with $t_{\rm TOF} \propto 1/\sqrt{2E_{0}/m_{i}}$. It is found that the TOF effect has a profound influence on the kinetic energy distribution of implanted ions and subsequent energy deposition process into the target. The HIPIB of mixed H+ and C+ was extracted from a magnetically insulated ion diode at a peak accelerating voltage of 350 kV, leading to an ion current density of 300 A/cm2 at the target. The widespread ion energy spectrum remarkably varied in shape as arriving at the target surface, from the original Gaussian-like of 80-ns duration to a pulse form of a sharp front and a long tail extending to about 140-ns duration. Energy loss of the mixed ions into a Ti target was simulated utilizing a Monte Carlo method. The energy deposition generally showed a shallowing trend and could be divided into two phases proceeded with sequent arrivals of H+ and C+. Note that, the peak value of deposited energy profile appeared at the beginning of mixed ion irradiation phase, other than the phase of firstly arrived H+ with peak kinetic energy and peak ion current. This study indicated that TOF effect of ions greatly affects the HIPIB-matter interaction with a kinetic energy spectrum of impinging ions at the target, noticeably differing from that of original output of the ion source; consequently, the specific energy deposition phenomena of the widespread ion energy can be studied with the TOF correlation of ion energy and ion current, otherwise not obtainable in common cases assuming fixed ion energy distribution in accordance with the original source output.


2013 ◽  
Vol 06 ◽  
pp. 197-219 ◽  
Author(s):  
Martin P. Stockli ◽  
Takahide Nakagawa

There are a growing number of applications for ion accelerators, with increasingly complex beam requirements and progressively higher beam intensities. The performance of the ion injector is critical to the success of these projects. First, there is the ion source that has to produce the desired ion species, with a large variety of desired species requiring vastly different ion sources. In addition, the ion source has to produce those ions with the desired rate and without debilitating impurities, as well as with the desired duty factor. Several examples will show that very successful ion sources can fail when the duty factor is increased because their lifetime becomes too short or their failure rate too high. Equally important is the extraction of those ions and their transport to the next stage of acceleration, because the slow ion velocities pose a serious challenge to increasing the intensity. As the beam intensity is increased, its emittance, stability and controllability become more important. This article cannot cover this subject in depth. It tries to provide a flavor of the complexities and serve as an introduction to further reading and studies.


1962 ◽  
Vol 33 (9) ◽  
pp. 905-911 ◽  
Author(s):  
C. E. Carlston ◽  
G. D. Magnuson

2011 ◽  
Author(s):  
Katsuhiro Shinto ◽  
Motoi Wada ◽  
Tomoaki Nishida ◽  
Yasuhiro Demura ◽  
Daichi Sasaki ◽  
...  

2009 ◽  
Vol 17 (5) ◽  
pp. 18-23 ◽  
Author(s):  
N. S. Smith ◽  
P. P. Tesch ◽  
N. P. Martin ◽  
R. W. Boswell

HyperionTM is a newly developed high-performance ion source that significantly advances the capabilities of many ion beam techniques used by material scientists and engineers. Hyperion has been developed to provide focused beams as small as 10 nm, beam currents up to several micro-Amps, and a broad range of ion species that include He+, O2+, Xe+ and H3+.


2020 ◽  
Vol 11 ◽  
pp. 1742-1749
Author(s):  
Nico Klingner ◽  
Gregor Hlawacek ◽  
Paul Mazarov ◽  
Wolfgang Pilz ◽  
Fabian Meyer ◽  
...  

While the application of focused ion beam (FIB) techniques has become a well-established technique in research and development for patterning and prototyping on the nanometer scale, there is still a large underused potential with respect to the usage of ion species other than gallium. Light ions in the range of m = 1–28 u (hydrogen to silicon) are of increasing interest due to the available high beam resolution in the nanometer range and their special chemical and physical behavior in the substrate. In this work, helium and neon ion beams from a helium ion microscope are compared with ion beams such as lithium, beryllium, boron, and silicon, obtained from a mass-separated FIB using a liquid metal alloy ion source (LMAIS) with respect to the imaging and milling resolution, as well as the current stability. Simulations were carried out to investigate whether the experimentally smallest ion-milled trenches are limited by the size of the collision cascade. While He+ offers, experimentally and in simulations, the smallest minimum trench width, light ion species such as Li+ or Be+ from a LMAIS offer higher milling rates and ion currents while outperforming the milling resolution of Ne+ from a gas field ion source. The comparison allows one to select the best possible ion species for the specific demands in terms of resolution, beam current, and volume to be drilled.


2020 ◽  
Vol 91 (1) ◽  
pp. 013322 ◽  
Author(s):  
J. W. Guo ◽  
L. Sun ◽  
W. Lu ◽  
W. H. Zhang ◽  
Y. C. Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document