A framework for safe assisted navigation of semi-autonomous vehicles among moving and steady obstacles

Robotica ◽  
2016 ◽  
Vol 35 (5) ◽  
pp. 981-1005 ◽  
Author(s):  
Andrey V. Savkin ◽  
Chao Wang

SUMMARYWe present a novel framework for collision free assisted navigation of a semi-autonomous vehicle in complex unknown environments with moving and steady obstacles. In the proposed system, a semi-autonomous vehicle is guided by a human operator and an automatic reactive navigator. The autonomous reactive navigation block takes control from the human operator in situations where there is the danger of collision with obstacle. A mathematically rigorous analysis of the proposed approach is provided. The performance of the proposed assisted navigation system is demonstrated via experiments with a real semi-autonomous hospital bed and extensive computer simulations.

Author(s):  
Wilson O. Achicanoy M. ◽  
Carlos F. Rodriguez H.

Uncertainty fusion techniques based on Kalman filtering are commonly used to provide a better estimation of the state of a system. A comparison between three different methods to combine the sensor information in order to improve the estimation of the pose of an autonomous vehicle is presented. Two sensors and their uncertainty models are used to measure the observables states of a process: a Global Positioning System (GPS) and an accelerometer. Given that GPS has low sampling rate and the uncertainty of the position, calculated by double integration from the accelerometer signal, increases with time, first a resetting of the estimator based on accelerometer by the GPS measurement is done. Next, a second method makes the fusion of both sensor uncertainties to calculate the estimation. Finally, a double estimation is done, one for each sensor, and a estimated state is calculated joining the individual estimations. These methods are explained by a case study of a guided bomb.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2952 ◽  
Author(s):  
Xingxing Guang ◽  
Yanbin Gao ◽  
Henry Leung ◽  
Pan Liu ◽  
Guangchun Li

The strapdown inertial navigation system (SINS) is widely used in autonomous vehicles. However, the random drift error of gyroscope leads to serious accumulated navigation errors during long continuous operation of SINS alone. In this paper, we propose to combine the Inertial Measurement Unit (IMU) data with the line feature parameters from a camera to improve the navigation accuracy. The proposed method can also maintain the autonomy of the navigation system. Experimental results show that the proposed inertial-visual navigation system can mitigate the SINS drift and improve the accuracy, stability, and reliability of the navigation system.


Author(s):  
Mhafuzul Islam ◽  
Mashrur Chowdhury ◽  
Hongda Li ◽  
Hongxin Hu

Vision-based navigation of autonomous vehicles primarily depends on the deep neural network (DNN) based systems in which the controller obtains input from sensors/detectors, such as cameras, and produces a vehicle control output, such as a steering wheel angle to navigate the vehicle safely in a roadway traffic environment. Typically, these DNN-based systems in the autonomous vehicle are trained through supervised learning; however, recent studies show that a trained DNN-based system can be compromised by perturbation or adverse inputs. Similarly, this perturbation can be introduced into the DNN-based systems of autonomous vehicles by unexpected roadway hazards, such as debris or roadblocks. In this study, we first introduce a hazardous roadway environment that can compromise the DNN-based navigational system of an autonomous vehicle, and produce an incorrect steering wheel angle, which could cause crashes resulting in fatality or injury. Then, we develop a DNN-based autonomous vehicle driving system using object detection and semantic segmentation to mitigate the adverse effect of this type of hazard, which helps the autonomous vehicle to navigate safely around such hazards. We find that our developed DNN-based autonomous vehicle driving system, including hazardous object detection and semantic segmentation, improves the navigational ability of an autonomous vehicle to avoid a potential hazard by 21% compared with the traditional DNN-based autonomous vehicle driving system.


Author(s):  
Xing Xu ◽  
Minglei Li ◽  
Feng Wang ◽  
Ju Xie ◽  
Xiaohan Wu ◽  
...  

A human-like trajectory could give a safe and comfortable feeling for the occupants in an autonomous vehicle especially in corners. The research of this paper focuses on planning a human-like trajectory along a section road on a test track using optimal control method that could reflect natural driving behaviour considering the sense of natural and comfortable for the passengers, which could improve the acceptability of driverless vehicles in the future. A mass point vehicle dynamic model is modelled in the curvilinear coordinate system, then an optimal trajectory is generated by using an optimal control method. The optimal control problem is formulated and then solved by using the Matlab tool GPOPS-II. Trials are carried out on a test track, and the tested data are collected and processed, then the trajectory data in different corners are obtained. Different TLCs calculations are derived and applied to different track sections. After that, the human driver’s trajectories and the optimal line are compared to see the correlation using TLC methods. The results show that the optimal trajectory shows a similar trend with human’s trajectories to some extent when driving through a corner although it is not so perfectly aligned with the tested trajectories, which could conform with people’s driving intuition and improve the occupants’ comfort when driving in a corner. This could improve the acceptability of AVs in the automotive market in the future. The driver tends to move to the outside of the lane gradually after passing the apex when driving in corners on the road with hard-lines on both sides.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2244
Author(s):  
S. M. Yang ◽  
Y. A. Lin

Safe path planning for obstacle avoidance in autonomous vehicles has been developed. Based on the Rapidly Exploring Random Trees (RRT) algorithm, an improved algorithm integrating path pruning, smoothing, and optimization with geometric collision detection is shown to improve planning efficiency. Path pruning, a prerequisite to path smoothing, is performed to remove the redundant points generated by the random trees for a new path, without colliding with the obstacles. Path smoothing is performed to modify the path so that it becomes continuously differentiable with curvature implementable by the vehicle. Optimization is performed to select a “near”-optimal path of the shortest distance among the feasible paths for motion efficiency. In the experimental verification, both a pure pursuit steering controller and a proportional–integral speed controller are applied to keep an autonomous vehicle tracking the planned path predicted by the improved RRT algorithm. It is shown that the vehicle can successfully track the path efficiently and reach the destination safely, with an average tracking control deviation of 5.2% of the vehicle width. The path planning is also applied to lane changes, and the average deviation from the lane during and after lane changes remains within 8.3% of the vehicle width.


2020 ◽  
Vol 10 (1) ◽  
pp. 175-182 ◽  
Author(s):  
Grzegorz Koralewski

AbstractThe work presents a simulation model of a “driver–automation–autonomous vehicles–road” system which is the basis for synthesis of automatic gear shift control system. The mathematical description makes use of physical quantities which characterise driving torque transformation from the combustion engine to the car driven wheels. The basic components of the model are algorithms for the driver’s action logic in controlling motion velocity, logic of gear shift control functioning regarding direction and moment of switching, for determining right-hand side of differential equations and for motion quality indicators. The model is realised in a form of an application software package, comprising sub-programmes for input data, for computerised motion simulation of cars with mechanical and hydro-mechanical – automatically controlled – transmission systems and for models of characteristic car routes.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3850
Author(s):  
Bastien Vincke ◽  
Sergio Rodriguez Rodriguez Florez ◽  
Pascal Aubert

Emerging technologies in the context of Autonomous Vehicles (AV) have drastically evolved the industry’s qualification requirements. AVs incorporate complex perception and control systems. Teaching the associated skills that are necessary for the analysis of such systems becomes a very difficult process and existing solutions do not facilitate learning. In this study, our efforts are devoted to proposingan open-source scale model vehicle platform that is designed for teaching the fundamental concepts of autonomous vehicles technologies that are adapted to undergraduate and technical students. The proposed platform is as realistic as possible in order to present and address all of the fundamental concepts that are associated with AV. It includes all on-board components of a stand-alone system, including low and high level functions. Such functionalities are detailed and a proof of concept prototype is presented. A set of experiments is carried out, and the results obtained using this prototype validate the usability of the model for the analysis of time- and energy-constrained systems, as well as distributed embedded perception systems.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3425
Author(s):  
Huanping Li ◽  
Jian Wang ◽  
Guopeng Bai ◽  
Xiaowei Hu

In order to explore the changes that autonomous vehicles would bring to the current traffic system, we analyze the car-following behavior of different traffic scenarios based on an anti-collision theory and establish a traffic flow model with an arbitrary proportion (p) of autonomous vehicles. Using calculus and difference methods, a speed transformation model is established which could make the autonomous/human-driven vehicles maintain synchronized speed changes. Based on multi-hydrodynamic theory, a mixed traffic flow model capable of numerical calculation is established to predict the changes in traffic flow under different proportions of autonomous vehicles, then obtain the redistribution characteristics of traffic flow. Results show that the reaction time of autonomous vehicles has a decisive influence on traffic capacity; the q-k curve for mixed human/autonomous traffic remains in the region between the q-k curves for 100% human and 100% autonomous traffic; the participation of autonomous vehicles won’t bring essential changes to road traffic parameters; the speed-following transformation model minimizes the safety distance and provides a reference for the bottom program design of autonomous vehicles. In general, the research could not only optimize the stability of transportation system operation but also save road resources.


Sensors ◽  
2021 ◽  
Vol 21 (1) ◽  
pp. 297
Author(s):  
Ali Marzoughi ◽  
Andrey V. Savkin

We study problems of intercepting single and multiple invasive intruders on a boundary of a planar region by employing a team of autonomous unmanned surface vehicles. First, the problem of intercepting a single intruder has been studied and then the proposed strategy has been applied to intercepting multiple intruders on the region boundary. Based on the proposed decentralised motion control algorithm and decision making strategy, each autonomous vehicle intercepts any intruder, which tends to leave the region by detecting the most vulnerable point of the boundary. An efficient and simple mathematical rules based control algorithm for navigating the autonomous vehicles on the boundary of the see region is developed. The proposed algorithm is computationally simple and easily implementable in real life intruder interception applications. In this paper, we obtain necessary and sufficient conditions for the existence of a real-time solution to the considered problem of intruder interception. The effectiveness of the proposed method is confirmed by computer simulations with both single and multiple intruders.


Sign in / Sign up

Export Citation Format

Share Document