Hemangioblastoma Stromal Cells Show Committed Stem Cell Phenotype

Author(s):  
Cassandra M. Welten ◽  
Emily C. Keats ◽  
Lee-Cyn Ang ◽  
Zia A. Khan

Background:Hemangioblastomas are benign vascular tumors of the central nervous system that occur sporadically or in association with von Hippel-Lindau disease. These tumors are characteristically composed of a dense capillary network with intervening stromal/interstitial cells. To date, the histogenesis of hemangioblastoma remains unclear. We hypothesize that hemangioblastomas arise from a defective mesodermal stem cell, which gives rise to the atypical vasculature.Methods:To test our hypothesis, we have characterized the cellular composition of hemangioblastomas by immunophenotyping pluripotent and committed stem cells and vascular endothelial cells.Results:Our findings show that hemangioblastoma endothelial cells are positive for CD133, a stem and progenitor cell marker. Vascular endothelial cells also expressed nuclear Oct4. In addition to the endothelium, both CD133 and Oct4 were present in stromal and perivascular cells. Interestingly, neither the endothelium nor the stromal cells expressed Sox2 or Nanog suggesting a committed stem cell phenotype.Conclusions:From these findings, we believe that hemangioblastoma stromal cells are committed stem cells producing both vascular cell types. The findings also show an unusual CD133-positive endothelial phenotype in hemangioblastoma.

2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Xinyu Liao ◽  
Ruiying Zhong ◽  
Hong Zhang ◽  
Fuke Wang

Background. The development of tissue engineering provides a new method for the clinical treatment of bone defects, but the problems of slow formation and slow vascularization of tissue engineered bone have always existed. Studies have shown that the combined culture system of vascular endothelial cells and adipose stem cells is superior to single cell in repairing bone defects. With the excellent proliferation ability, secretion of synthetic collagen and a variety of regulatory factors and fibroblasts can differentiate into osteoblasts and have the potential to be excellent seed cells involved in tissue engineering bone construction. Objective. To investigate the effects of combined culture of fibroblasts, vascular endothelial cells, and adipose stem cells on proliferation and osteogenic differentiation of adipose stem cells. Methods. The cells were divided into 4 groups: adipose stem cell group, adipose stem cell+vascular endothelial cell coculture group, adipose stem cell+fibroblast coculture group, and adipose stem cell+vascular endothelial cell+fibroblast coculture group. The morphological changes of the cells were observed under an inverted microscope. After 1, 3, 5, 7, and 9 days of coculture, the proliferation of adipose stem cells in each group was detected by a CCK-8 method and the growth curve was plotted. Adipose stem cells in each group were stained with alizarin red and alkaline phosphatase at days 7, 14, 21, and 28. At the third week of coculture, Western blot was used to detect the expression level of bone morphogenetic protein 2 of adipose stem cells in each group. Results and Conclusions. (1) After 14 days of culture, some cells in the adipose stem cell+vascular endothelial cell+fibroblast coculture group fused into clumps and distributed in nests, while the adipose stem cells in the adipose stem cell group had a single cell morphology and no cell clusters were observed. (2) The cell growth curves were basically the same in each group, and the absorbance value increased gradually. The absorbance value of the adipocyte+vascular endothelial cell+fibroblast coculture group was the highest, followed by the adipocyte+fibroblast coculture group and then the adipocyte+fibroblast coculture group. (3) Alizarin red staining showed negative reaction in each group on the 7th day, and a small number of red positive cells gradually appeared in each group as time went on. On the 28th day, red positive cells were found in all groups, and most of them were in the coculture group of adipose stem cells+vascular endothelial cells+fibroblasts, showing red focal. The coculture group of adipose stem cells+vascular endothelial cells and adipose stem cells+fibroblasts was less, and the adipose stem cell group was the least. On day 28 of alkaline phosphatase staining, cells in each group had red positive particles, and the adipose stem cell+vascular endothelial cell+fibroblast coculture group and adipose stem cell+fibroblast coculture group had the most, followed by the adipose stem cell+vascular endothelial cell coculture group and then the adipose stem cell group. (4) Bone morphogenetic protein 2 was expressed in all groups, especially in adipose stem cell+fibroblast coculture group and adipose stem cell+vascular endothelial cell+ fibroblast coculture group. (5) Fibroblast could promote adipose stem cell osteogenic differentiation better than vascular endothelial cells, but the proliferation effect was not as good as vascular endothelial cells. The coculture system of fibroblast combined with vascular endothelial cells and adipose stem cells promoted the proliferation of adipose stem cells and the rapid and efficient differentiation of adipose stem cells into osteoblasts.


Angiogenesis ◽  
2021 ◽  
Author(s):  
Giovanni Canu ◽  
Christiana Ruhrberg

AbstractHematopoiesis in vertebrate embryos occurs in temporally and spatially overlapping waves in close proximity to blood vascular endothelial cells. Initially, yolk sac hematopoiesis produces primitive erythrocytes, megakaryocytes, and macrophages. Thereafter, sequential waves of definitive hematopoiesis arise from yolk sac and intraembryonic hemogenic endothelia through an endothelial-to-hematopoietic transition (EHT). During EHT, the endothelial and hematopoietic transcriptional programs are tightly co-regulated to orchestrate a shift in cell identity. In the yolk sac, EHT generates erythro-myeloid progenitors, which upon migration to the liver differentiate into fetal blood cells, including erythrocytes and tissue-resident macrophages. In the dorsal aorta, EHT produces hematopoietic stem cells, which engraft the fetal liver and then the bone marrow to sustain adult hematopoiesis. Recent studies have defined the relationship between the developing vascular and hematopoietic systems in animal models, including molecular mechanisms that drive the hemato-endothelial transcription program for EHT. Moreover, human pluripotent stem cells have enabled modeling of fetal human hematopoiesis and have begun to generate cell types of clinical interest for regenerative medicine.


2019 ◽  
Vol 20 (2) ◽  
pp. 406 ◽  
Author(s):  
Alina-Andreea Zimta ◽  
Oana Baru ◽  
Mandra Badea ◽  
Smaranda Buduru ◽  
Ioana Berindan-Neagoe

Dental surgeries can result in traumatic wounds that provoke major discomfort and have a high risk of infection. In recent years, density research has taken a keen interest in finding answers to this problem by looking at the latest results made in regenerative medicine and adapting them to the specificities of oral tissue. One of the undertaken directions is the study of angiogenesis as an integrative part of oral tissue regeneration. The stimulation of this process is intended to enhance the local availability of stem cells, oxygen levels, nutrient supply, and evacuation of toxic waste. For a successful stimulation of local angiogenesis, two major cellular components must be considered: the stem cells and the vascular endothelial cells. The exosomes are extracellular vesicles, which mediate the communication between two cell types. In regenerative dentistry, the analysis of exosome miRNA content taps into the extended communication between these cell types with the purpose of improving the regenerative potential of oral tissue. This review analyzes the stem cells available for the dentistry, the molecular cargo of their exosomes, and the possible implications these may have for a future therapeutic induction of angiogenesis in the oral wounds.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Huafang Wang ◽  
Xiaohang Ye ◽  
Haowen Xiao ◽  
Ni Zhu ◽  
Cong Wei ◽  
...  

Protein tyrosine phosphatases (PTPs) act as key regulators in various cellular processes such as proliferation, differentiation, and migration. Our previous research demonstrated that non-receptor-typed PTP21 (PTPN21), a member of the PTP family, played a critical role in the proliferation, cell cycle, and chemosensitivity of acute lymphoblastic leukemia cells. However, the role of PTPN21 in the bone marrow microenvironment has not yet been elucidated. In the study, we explored the effects of PTPN21 on human bone marrow-derived mesenchymal stem cells (BM-MSCs) via lentiviral-mediated overexpression and knock-down of PTPN21 in vitro. Overexpressing PTPN21 in BM-MSCs inhibited the proliferation through arresting cell cycle at the G0 phase but rendered them a higher osteogenic and adipogenic differentiation potential. In addition, overexpressing PTPN21 in BM-MSCs increased their senescence levels through upregulation of P21 and P53 and dramatically changed the levels of crosstalk with their typical target cells including immunocytes, tumor cells, and vascular endothelial cells. BM-MSCs overexpressing PTPN21 had an impaired immunosuppressive function and an increased capacity of recruiting tumor cells and vascular endothelial cells in a chemotaxis transwell coculture system. Collectively, our data suggested that PTPN21 acted as a pleiotropic factor in modulating the function of human BM-MSCs.


Sign in / Sign up

Export Citation Format

Share Document