Compressibility Effects in High Speed Air Flow

1931 ◽  
Vol 35 (247) ◽  
pp. 665-674
Author(s):  
S. G. Hooker

Any theoretical attempt to evaluate the forces and couples experienced by an aircraft when in flight by a mathematical analysis of the pressures exerted by the air when in motion about the various parts, leads to what have, so far, proved insuperable difficulties. It involves the integration of the equations of motion of a real fluid, and, except in a few very special cases, these have been insoluble. The actual motion of a fluid is affected by a number of its properties, and, in general, accounts would have to be taken of its density, viscosity, and at high speeds its compressibility. In certain circumstances the effect of these last two can be neglected and the classical theory of hydrodynamics dealing with the motion of a non-viscous, incompressible or perfect fluid can be applied. A further simplification consists in supposing that the motion is irrotational, that is, any small portion of the fluid at a point has no angular velocity about its centre of gravity.

1928 ◽  
Vol 32 (213) ◽  
pp. 777-798 ◽  
Author(s):  
John W. Maccoll

The full equations of motion for the flow of a viscous fluid have proved too complicated for any general solution to be obtained. It is to be doubted if, in. the near future, the problem of fluid motion will be solved in a general manner, although solutions for a few special cases may be found. In view of this it is of some value to investigate experimentally certain cases which are likely to prove of mathematical interest at a later date; this paper deals with such a problem. By means of the results obtained experimentally the mathematical analysis may be guided along the right lines and a satisfactory analytical solutioa of the problem be obtained.The instrument used in exploring the fluid motion has a special interest of its own as it may prove of use in further aerodynamical investigations where the flow is of three–dimensional character. The development of this instrument, and its performance when tested, are described in Part I.The experiments for the measurement of the forces on the spinning sphere are described in Part II.


2017 ◽  
Vol 2017 (9) ◽  
pp. 11-17 ◽  
Author(s):  
Monika Podwórna

The impact factors in the vertical deflection obtained in dynamic analysis of BTT systems - bridged / track structure / high speed train (BTT) - are discussed. The BTT system is one of 5 bridges spanning from 15 m to 27 m, modelled as simply supported beams loaded by ICE-3 trains traveling at high speeds. The two-dimensional, physically non-linear BTT model includes: viscoelastic suspension of rail vehicles on two independent axle bogies and non-linear one-sided wheel-rail contact springs according to Hertz theory, access zones for composite construction. The BTT system was divided into subsystems loaded with vertical interactions transmitted by elastic or viscoelastic and physically linear or nonlinear constraints. Using Lagrange equations and internal aggregation of subsystems, discretised according to the finite element method, matrix equations of motion of the subsystems were obtained, with explicit linear left sides and nonlinear implicit right sides, which were integrated numerically using the Newmark method with parameters βN=1/4, γN=1/2. The analysis focus on the effect of random track irregularities on the dynamic response of BTT systems.


TAPPI Journal ◽  
2009 ◽  
Vol 8 (1) ◽  
pp. 20-26 ◽  
Author(s):  
PEEYUSH TRIPATHI ◽  
MARGARET JOYCE ◽  
PAUL D. FLEMING ◽  
MASAHIRO SUGIHARA

Using an experimental design approach, researchers altered process parameters and material prop-erties to stabilize the curtain of a pilot curtain coater at high speeds. Part I of this paper identifies the four significant variables that influence curtain stability. The boundary layer air removal system was critical to the stability of the curtain and base sheet roughness was found to be very important. A shear thinning coating rheology and higher curtain heights improved the curtain stability at high speeds. The sizing of the base sheet affected coverage and cur-tain stability because of its effect on base sheet wettability. The role of surfactant was inconclusive. Part II of this paper will report on further optimization of curtain stability with these four variables using a D-optimal partial-facto-rial design.


Alloy Digest ◽  
1980 ◽  
Vol 29 (8) ◽  

Abstract RED CUT COBALT steel is made by adding 5% cobalt to the conventional 18% tungsten -4% chromium-1% vanadium high-speed steel. Cobalt increases hot or red hardness and thus enables the tool to maintain a higher hardness at elevated temperatures. This steel is best adapted for hogging cuts or where the temperature of the cutting point of the tool in increased greatly. It is well adapted for tools to be used for reaming cast-iron engine cylinders, turning alloy steel or cast iron and cutting nonferrous alloys at high speeds. This datasheet provides information on composition, physical properties, and hardness as well as fracture toughness. It also includes information on forming, heat treating, and machining. Filing Code: TS-367. Producer or source: Teledyne Vasco.


Alloy Digest ◽  
1980 ◽  
Vol 29 (7) ◽  

Abstract CPM REX 25 is a super high-speed steel made without cobalt. It is comparable to AISI Type T15 cobalt-containing high-speed steel in response to heat treatment, properties, and tool performance. CPM REX 25 is recommended for machining operations requiring heavy cuts, high speeds and feeds, and difficult-to-machine materials of high hardness and abrasion resistance. Typical applications are boring tools, drills, gear cutters, punches, form tools, end mills and broaches. This datasheet provides information on composition, physical properties, hardness, and elasticity as well as fracture toughness. It also includes information on forming, heat treating, machining, and surface treatment. Filing Code: TS-365. Producer or source: Crucible Materials Corporation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fukun Wang ◽  
Jianguo Wang ◽  
Li Cai ◽  
Rui Su ◽  
Wenhan Ding ◽  
...  

AbstractTwo special cases of dart leader propagation were observed by the high-speed camera in the leader/return stroke sequences of a classical triggered lightning flash and an altitude-triggered lightning flash, respectively. Different from most of the subsequent return strokes preceded by only one leader, the return stroke in each case was preceded by two leaders occurring successively and competing in the same channel, which herein is named leader-chasing behavior. In one case, the polarity of the latter leader was opposite to that of the former leader and these two combined together to form a new leader, which shared the same polarity with the former leader. In the other case, the latter leader shared the same polarity with the former leader and disappeared after catching up with the former leader. The propagation of the former leader in this case seems not to be significantly influenced by the existence of the latter leader.


2011 ◽  
Vol 403-408 ◽  
pp. 5053-5060 ◽  
Author(s):  
Mostafa Ghayour ◽  
Amir Zareei

In this paper, an appropriate mechanism for a hexapod spider-like mobile robot is introduced. Then regarding the motion of this kind of robot which is inspired from insects, direct kinematics of position and velocity of the centre of gravity (C.G.) of the body and noncontact legs are analysed. By planning and supposing a specific time variation for each joint variable, location and velocity of the C.G. of the robot platform and angular velocity of the body are obtained and the results are shown and analysed.


From the general principles of quantum mechanics it is deduced that the wave equation of a particle can always be written as a linear differential equation of the first order with matrix coefficients. The principle of relativity and the elementary nature of the particle then impose certain restrictions on these coefficient matrices. A general theory for an elementary particle is set up under certain assumptions regarding these matrices. Besides, two physical assumptions concerning the particle are made, namely, (i) that it satisfies the usual second-order wave equation with a fixed value of the rest mass, and (ii) either the total charge or the total energy for the particle-field is positive definite. It is shown that in consequence of (ii) the theory can be quantized in the interaction free case. On introducing electromagnetic interaction it is found that the particle exhibits a pure magnetic moment in the non-relativistic approximation. The well-known equations for the electron and the meson are included as special cases in the present scheme. As a further illustration of the theory the coefficient matrices corresponding to a new elementary particle are constructed. This particle is shown to have states of spin both 3/2 and 1/2. In a certain sense it exhibits an inner structure in addition to the spin. In the non-relativistic approximation the behaviour of this particle in an electromagnetic field is the same as that of the Dirac electron. Finally, the transition from the particle to the wave form of the equations of motion is effected and the field equations are given in terms of tensors and spinors.


1948 ◽  
Vol 15 (3) ◽  
pp. 248-255
Author(s):  
E. T. Habib

Abstract In mechanical gages used to measure the pressure from an underwater explosion, small copper cylinders are compressed at high speeds. This paper describes the test apparatus designed for the dynamic calibration of these cylinders, presents the results obtained with this apparatus, and compares these results with those obtained by other experimenters.


Sign in / Sign up

Export Citation Format

Share Document