A New 1000°C Double Tilt Stage for the Hitachi 650 kV Microscope

Author(s):  
W. Worthington ◽  
T. Kosel ◽  
R. Sinclair

A new 1000°C specimen holder has been developed for the Hu-650 electron microscope and is interchangeable with other holders for the recently designed orthagonal drive tilting stage. The requirements for the high temperature device were as follows: 1. An orthogonal double-tilt stage with all original design criteria maintained(1). 2. Capability of heating standard (3mm. dia.) metallurgical specimens to 1000°C. 3. Geometry and materials should be such that stage and microscope components shall not be damaged by heat from the specimen holder. 4. The electric current to the heating element shall impart a minimum effect upon the microscope electron beam. 5. Heating and cooling rates to be as rapid as possible.

2012 ◽  
Vol 715-716 ◽  
pp. 486-491
Author(s):  
Nathalie Bozzolo ◽  
S. Jacomet ◽  
M. Houillon ◽  
B. Gaudout ◽  
Roland E. Logé

A heating stage as been developed to perform in-situ annealing in a SEM equipped with an EBSD system in order to study recrystallization mechanisms. High temperature treatments could then be performed inside the SEM, up to 1180°C and with high heating-and cooling-rates (~100°C.s-1). Samples were cooled down to room temperature to perform EBSD orientation mapping in between successive short-duration heat-treatments. Microstructure evolution snapshots obtained this way are presented in this paper to show recrystallization in Zircaloy4 and in pure tantalum.


Author(s):  
Yoshio Bando ◽  
Yoshizo Kitami ◽  
Masato Yokoyama

Elemental analysis for beam-sensitive materials is limited by radiation damage due to inelastic scattering of electrons. The amorphization and the mass loss often occure during the observation under a focused electron beam. It has been so far understood that the electron beam damage is effectively reduced by decreasing the specimen temperature. The cryo-electron microscope using liquid helium colled specimen holder is useful to minimize the radiation damage of the beam-sentitive materials. In the present paper, we have studied the radiation damage of various insulating inorganic materials in terms of the rate of the amorphization and the selective mass loss, which are observed at a room temperature (300K) and a low temperature (20K). All measurements are performed on a JEM-4000FX high-resolution analytical electron microscope with full analytical system. The specimen fragments placed on a holey carbon supporting grid are cooled down to about 20K. using a liquid helium specimen holder attached with a Be retainer.


Author(s):  
Benjamin Kellie ◽  
Shaurya Prakash

This paper reports on recent advances in fabricating alumina-based ceramic microcombustors for applications in high temperature microsystems. We have fabricated alumina structures with critical dimensions on the order of 1 mm or less by using a gel-casting approach with poly(vinyl) alcohol (PVA) as a non-toxic polymeric binder. Polymer binder content, alumina weight ratio, and thermal cycling were varied systematically to develop microcombustors that can sustain stable flames in a spiral configuration allowing for better mixing of fuel and oxidizer streams for a more uniform heat output. The polymer binder and cross-linker content varied between 10 and 20% (w/v to DI water) and 50 and 100% (w/w to PVA) respectively to obtain an optimal binder content. The weight ratio of alumina (w/w 30–50%) in the binder solution was evaluated with 1.1 micron particles to observe the effect on the green body density. The green body was then fired in a high temperature furnace in air to burn-out the polymeric binder and sinter the ceramic. Heating and cooling rates, maximum operation temperature, and dwell times were evaluated to obtain high density ceramic structures with 50% or higher alumina content. Thermal stress and heating and cooling rates appear to be major parameters to control in order to obtain high-quality microcombustors.


1998 ◽  
Vol 512 ◽  
Author(s):  
X. A. Cao ◽  
C. R. Abernathy ◽  
R. K. Singh ◽  
S. J. Pearton ◽  
M. Fu ◽  
...  

ABSTRACTSi+ implant activation efficiencies above 90%, even at doses of 5×1015 cm−2, have been achieved in GaN by RTP at 1400–1500°C for 10 secs. The annealing system utilizes with MoSi2 heating elements capable of operation up to 1900 °C, producing high heating and cooling rates (up to 100 °C · s−1). Unencapsulated GaN show severe surface pitting at 1300 °C, and complete loss of the film by evaporation at 1400 °C. Dissociation of nitrogen from the surface is found to occur with an approximate activation energy of 3.8 eV for GaN (compared to 4.4 eV for AIN and 3.4 eV for InN). Encapsulation with either rf-magnetron reactively sputtered or MOMBE-grown AIN thin films provide protection against GaN surface degradation up to 1400 °C, where peak electron concentrations of ∼5×1020 cm-3 can be achieved in Si-implanted GaN. SIMS profiling showed little measurable redistribution of Si, suggesting Dsi ≤ 10-13 cm2 · s−1 at 1400 °C. The implant activation efficiency decreases at higher temperatures, which may result from SiGa to SiN site switching and resultant self-compensation.


Author(s):  
Louis T. Germinario

A liquid nitrogen stage has been developed for the JEOL JEM-100B electron microscope equipped with a scanning attachment. The design is a modification of the standard JEM-100B SEM specimen holder with specimen cooling to any temperatures In the range ~ 55°K to room temperature. Since the specimen plane is maintained at the ‘high resolution’ focal position of the objective lens and ‘bumping’ and thermal drift la minimized by supercooling the liquid nitrogen, the high resolution capability of the microscope is maintained (Fig.4).


Author(s):  
J. L. Farrant ◽  
J. D. McLean

For electron microscope techniques such as ferritin-labeled antibody staining it would be advantageous to have available a simple means of thin sectioning biological material without subjecting it to lipid solvents, impregnation with plastic monomers and their subsequent polymerization. With this aim in view we have re-examined the use of protein as an embedding medium. Gelatin which has been used in the past is not very satisfactory both because of its fibrous nature and the high temperature necessary to keep its solutions fluid. We have found that globular proteins such as the serum and egg albumins can be cross-linked so as to yield blocks which are suitable for ultrathin sectioning.


Author(s):  
Chester J. Calbick ◽  
Richard E. Hartman

Quantitative studies of the phenomenon associated with reactions induced by the electron beam between specimens and gases present in the electron microscope require precise knowledge and control of the local environment experienced by the portion of the specimen in the electron beam. Because of outgassing phenomena, the environment at the irradiated portion of the specimen is very different from that in any place where gas pressures and compositions can be measured. We have found that differential pumping of the specimen chamber by a 4" Orb-Ion pump, following roughing by a zeolite sorption pump, can produce a specimen-chamber pressure 100- to 1000-fold less than that in the region below the objective lens.


Author(s):  
R. C. Moretz ◽  
D. F. Parsons

Short lifetime or total absence of electron diffraction of ordered biological specimens is an indication that the specimen undergoes extensive molecular structural damage in the electron microscope. The specimen damage is due to the interaction of the electron beam (40-100 kV) with the specimen and the total removal of water from the structure by vacuum drying. The lower percentage of inelastic scattering at 1 MeV makes it possible to minimize the beam damage to the specimen. The elimination of vacuum drying by modification of the electron microscope is expected to allow more meaningful investigations of biological specimens at 100 kV until 1 MeV electron microscopes become more readily available. One modification, two-film microchambers, has been explored for both biological and non-biological studies.


Author(s):  
R. Sinclair ◽  
B.E. Jacobson

INTRODUCTIONThe prospect of performing chemical analysis of thin specimens at any desired level of resolution is particularly appealing to the materials scientist. Commercial TEM-based systems are now available which virtually provide this capability. The purpose of this contribution is to illustrate its application to problems which would have been intractable until recently, pointing out some current limitations.X-RAY ANALYSISIn an attempt to fabricate superconducting materials with high critical currents and temperature, thin Nb3Sn films have been prepared by electron beam vapor deposition [1]. Fine-grain size material is desirable which may be achieved by codeposition with small amounts of Al2O3 . Figure 1 shows the STEM microstructure, with large (∽ 200 Å dia) voids present at the grain boundaries. Higher quality TEM micrographs (e.g. fig. 2) reveal the presence of small voids within the grains which are absent in pure Nb3Sn prepared under identical conditions. The X-ray spectrum from large (∽ lμ dia) or small (∽100 Ǻ dia) areas within the grains indicates only small amounts of A1 (fig.3).


Author(s):  
William P. Wergin ◽  
Eric F. Erbe ◽  
Eugene L. Vigil

Investigators have long realized the potential advantages of using a low temperature (LT) stage to examine fresh, frozen specimens in a scanning electron microscope (SEM). However, long working distances (W.D.), thick sputter coatings and surface contamination have prevented LTSEM from achieving results comparable to those from TEM freeze etch. To improve results, we recently modified techniques that involve a Hitachi S570 SEM, an Emscope SP2000 Sputter Cryo System and a Denton freeze etch unit. Because investigators have frequently utilized the fractured E face of the plasmalemma of yeast, this tissue was selected as a standard for comparison in the present study.In place of a standard specimen holder, a modified rivet was used to achieve a shorter W.D. (1 to -2 mm) and to gain access to the upper detector. However, the additional height afforded by the rivet, precluded use of the standard shroud on the Emscope specimen transfer device. Consequently, the sample became heavily contaminated (Fig. 1). A removable shroud was devised and used to reduce contamination (Fig. 2), but the specimen lacked clean fractured edges. This result suggested that low vacuum sputter coating was also limiting resolution.


Sign in / Sign up

Export Citation Format

Share Document