Application of many-beam theory of diffraction contrast for examination of nature of faults in Co3Pd ordered films

Author(s):  
L.I. Vershinina ◽  
G.A. Kopilov ◽  
R.E. Osipova ◽  
V.G. Pynko

Single crystal Co3Pd films were prepared by usual method of vacuum evaporation of alloy co0.75Pd0.25 on the (001)-plane of MgO single crystal heated up to 260°C at pressure of 10-4 torr. The films were annealed at 650°C for two hours with following cooling to the room temperature with speed of 0.5 dg/min at pressure of 10-5 torr. The alloy films of about 600 Å thick were examined. The structure of the CO3Pd films was investigated with transmission electron microscopy, operating at 100 kV. The deviation of the origin of the Ewald sphere from the symmetrical position was determined from the position of the Kikuchi lines. Films were oriented so that only reflections along the 010 systematic row were strongly excited. The film surface was parallel to the (00l)-plane (Fig.1a). The Co3Pd films had an ordered L12 lattice. Observed light-field images contains a large amount of the fringes, oriented along the [110] and [100] (Fig.lb).

2018 ◽  
Vol 90 (5) ◽  
pp. 833-844
Author(s):  
Leonid Aslanov ◽  
Valery Zakharov ◽  
Ksenia Paseshnichenko ◽  
Aleksandr Yatsenko ◽  
Andrey Orekhov ◽  
...  

AbstractA new method for synthesis of 2D nanocrystals in water was proposed. The use of perfluorothiophenolate ions as surfactant allowed us to produce 2D single-crystal nanosheets of CaS at pH=9 and flat nanocrystals of PbS at pH=9 at room temperature. Mesocrystalline nanobelts of CdS and mesocrystals of PbS were obtained at pH=3–5 and pH=10–12, respectively. Morphology, structure and chemical composition of nanoparticles were characterized by high-resolution transmission electron microscopy, electron diffraction and energy dispersive X-ray spectroscopy. A mechanism of nanoparticles formation was discussed.


2007 ◽  
Vol 546-549 ◽  
pp. 1245-1248 ◽  
Author(s):  
J.D. Liu ◽  
Tao Jin ◽  
N.R. Zhao ◽  
Z.H. Wang ◽  
Xiao Feng Sun ◽  
...  

a kind of as-cast nickel-base single crystal superalloy was TLP bonded using Ni-Cr-B amorphous foil at different temperatures. Special attention is paid to the formation of boride in diffusion zone of TLP joints at different conditions. The chemical composition and microstructure of borides were investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). At different bonding temperature, M3B2 precipitates appear distinct morphologies. At 1200°C, both blocky and plate-like borides formed owing to the diffusion of boron atoms into base metal and precipitation during the cooling process. At 1230°C or above, due to the diffusion of boron atoms the constitutional liquation of original γ/γ′ eutectics in the base metal occurs and borides formed when the system was cooled to room temperature. The analysis of TEM results reveals that M3B2 has a tetragonal structure and is rich in Mo, W, and Cr elements.


Author(s):  
William L. Goodman ◽  
Kenneth R. Lawless

The structure of thin copper electrodeposits on single crystal nickel substrates has been previously studied in this laboratory. We thought it would be desirable to prepare similar bi-crystal films by the evaporation of copper onto nickel so that a comparison of the structures obtained by the two methods of deposition could be made. For this purpose, single crystal nickel films of (100), (110) and (111) orientations were prepared by evaporation onto heated (410°C) rocksalt substrates. Without breaking the vacuum, copper was evaporated in the form of a thin wedge onto the nickel surfaces after the nickel was cooled to room temperature. High purity (99.999%) metals were used, and these were thoroughly outgassed before evaporation. The thickness gradient of copper was obtained by moving a shutter between the substrate and the copper source during the evaporation. The resulting bi-crystal films were then stripped from the rocksalt and examined by transmission electron microscopy.


Author(s):  
Joseph J. Comer

Domains visible by transmission electron microscopy, believed to be Dauphiné inversion twins, were found in some specimens of synthetic quartz heated to 680°C and cooled to room temperature. With the electron beam close to parallel to the [0001] direction the domain boundaries appeared as straight lines normal to <100> and <410> or <510> directions. In the selected area diffraction mode, a shift of the Kikuchi lines was observed when the electron beam was made to traverse the specimen across a boundary. This shift indicates a change in orientation which accounts for the visibility of the domain by diffraction contrast when the specimen is tilted. Upon exposure to a 100 KV electron beam with a flux of 5x 1018 electrons/cm2sec the boundaries are rapidly decorated by radiation damage centers appearing as black spots. Similar crystallographio boundaries were sometimes found in unannealed (0001) quartz damaged by electrons.


Author(s):  
A.J. Tousimis ◽  
T.R. Padden

The size, shape and surface morphology of human erythrocytes (RBC) were examined by scanning electron microscopy (SEM), of the fixed material directly and by transmission electron microscopy (TEM) of surface replicas to compare the relative merits of these two observational procedures for this type specimen.A sample of human blood was fixed in glutaraldehyde and washed in distilled water by centrifugation. The washed RBC's were spread on freshly cleaved mica and on aluminum coated microscope slides and then air dried at room temperature. The SEM specimens were rotary coated with 150Å of 60:40- gold:palladium alloy in a vacuum evaporator using a new combination spinning and tilting device. The TEM specimens were preshadowed with platinum and then rotary coated with carbon in the same device. After stripping the RBC-Pt-C composite film, the RBC's were dissolved in 2.5N HNO3 followed by 0.2N NaOH leaving the preshadowed surface replicas showing positive topography.


Author(s):  
S. Mahajan

The evolution of dislocation channels in irradiated metals during deformation can be envisaged to occur in three stages: (i) formation of embryonic cluster free regions, (ii) growth of these regions into microscopically observable channels and (iii) termination of their growth due to the accumulation of dislocation damage. The first two stages are particularly intriguing, and we have attempted to follow the early stages of channel formation in polycrystalline molybdenum, irradiated to 5×1019 n. cm−2 (E > 1 Mev) at the reactor ambient temperature (∼ 60°C), using transmission electron microscopy. The irradiated samples were strained, at room temperature, up to the macroscopic yield point.Figure 1 illustrates the early stages of channel formation. The observations suggest that the cluster free regions, such as A, B and C, form in isolated packets, which could subsequently link-up to evolve a channel.


Author(s):  
Joseph J. Comer ◽  
Charles Bergeron ◽  
Lester F. Lowe

Using a Van De Graaff Accelerator thinned specimens were subjected to bombardment by 3 MeV N+ ions to fluences ranging from 4x1013 to 2x1016 ions/cm2. They were then examined by transmission electron microscopy and reflection electron diffraction using a 100 KV electron beam.At the lowest fluence of 4x1013 ions/cm2 diffraction patterns of the specimens contained Kikuchi lines which appeared somewhat broader and more diffuse than those obtained on unirradiated material. No damage could be detected by transmission electron microscopy in unannealed specimens. However, Dauphiné twinning was particularly pronounced after heating to 665°C for one hour and cooling to room temperature. The twins, seen in Fig. 1, were often less than .25 μm in size, smaller than those formed in unirradiated material and present in greater number. The results are in agreement with earlier observations on the effect of electron beam damage on Dauphiné twinning.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Jane Payne ◽  
Philip Coudron

This transmission electron microscopy (TEM) procedure was designed to examine a gram positive spore-forming bacillus in colony on various solid agar media with minimal artifact. Cellular morphology and organization of colonies embedded in Poly/Bed 812 resin (P/B) were studied. It is a modification of procedures used for undecalcified rat bone and Stomatococcus mucilaginosus.Cultures were fixed and processed at room temperature (RT) under a fume hood. Solutions were added with a Pasteur pipet and removed by gentle vacuum aspiration. Other equipment used is shown in Figure 3. Cultures were fixed for 17-18 h in 10-20 ml of RT 2% phosphate buffered glutaraldehyde (422 mosm/KgH2O) within 5 m after removal from the incubator. After 3 (30 m) changes in 0.15 M phosphate buffer (PB = 209-213 mosm/KgH2O, pH 7.39-7.41), colony cut-outs (CCO) were made with a scalpel.


Author(s):  
A.C. Daykin ◽  
C.J. Kiely ◽  
R.C. Pond ◽  
J.L. Batstone

When CoSi2 is grown onto a Si(111) surface it can form in two distinct orientations. A-type CoSi2 has the same orientation as the Si substrate and B-type is rotated by 180° degrees about the [111] surface normal.One method of producing epitaxial CoSi2 is to deposit Co at room temperature and anneal to 650°C.If greater than 10Å of Co is deposited then both A and B-type CoSi2 form via a number of intermediate silicides .The literature suggests that the co-existence of A and B-type CoSi2 is in some way linked to these intermediate silicides analogous to the NiSi2/Si(111) system. The phase which forms prior to complete CoSi2 formation is CoSi. This paper is a crystallographic analysis of the CoSi2/Si(l11) bicrystal using a theoretical method developed by Pond. Transmission electron microscopy (TEM) has been used to verify the theoretical predictions and to characterise the defect structure at the interface.


Sign in / Sign up

Export Citation Format

Share Document