Energetic Cluster Ion Impacts on Carbon and Gold/Carbon Films

Author(s):  
M.C. Ledbetter ◽  
M.W. Matthew ◽  
R.J. Beuhler ◽  
L. Friedman

Mass analyzed beams of accelerated cluster ions have been used to study energy transfer processes on impact with solid surfaces. Singly-charged water molecule clusters containing between 20 and 150 water molecules and one proton have been accelerated to kinetic energies as high as 300 kV and collided with 10 nm films of carbon or carbon covered with 2 μg/cm2 evaporated gold. Alterations in the structure of these films have been studied by transmission electron microscopy.Carbon films bombarded with water clusters of 25 and 100 molecules accelerated to 300 kV are shown in Fig. 1. The use of 100 water molecules produced craters about 7-8 nm in diameter and even 50 molecules produced craters about 1.5-2 nm in diameter; however, 25 molecules failed to produce any detectable alterations in the film. The bombardment of a gold-covered film by similar clusters is shown in Fig. 2. In these cases, gold grains were removed to form voids about 10-20 nm in diameter, even by the clusters as small as 25 molecules, which produced no craters in pure carbon.

2011 ◽  
Vol 11 (9) ◽  
pp. 24535-24566
Author(s):  
M. J. Ryding ◽  
Å. M. Jonsson ◽  
A. S. Zatula ◽  
P. U. Andersson ◽  
E. Uggerud

Abstract. Reactions between pyridine containing water cluster ions, H+(pyridine)1(H2O)n, H+(pyridine)2(H2O)n and H+(NH3)1(pyridine)1(H2O)n (n up to 15) with NH3 have been studied experimentally using a quadrupole time-of-flight mass spectrometer. The product ions in the reaction between H+(pyridine)m(H2O)n and NH3 have been determined for the first time. It is found that the reaction mainly leads to cluster ions of the form HH+(NH3)1(pyridine)1(H2O)n−x, with x = 1 or 2 depending on the initial size of the reacting cluster ion. For a given number of water molecules (from 5 to 15) in the cluster ion, rate coefficients are found to be slightly lower than those for protonated pure water clusters reacting with ammonia. The rate coefficients obtained from this study are used in a kinetic cluster ion model under tropospheric conditions. The results from the model suggest that cluster ions containing ammonia and more than one pyridine, picoline or lutidine molecule should dominate at ground level under typical conditions.


2012 ◽  
Vol 12 (6) ◽  
pp. 2809-2822 ◽  
Author(s):  
M. J. Ryding ◽  
A. S. Zatula ◽  
P. U. Andersson ◽  
E. Uggerud ◽  

Abstract. Reactions between pyridine containing water cluster ions, H+(pyridine)1(H2O)n, H+(pyridine)2(H2O)n and H+(NH3)1(pyridine)1(H2O)n (n up to 15) with NH3 have been studied experimentally using a quadrupole time-of-flight mass spectrometer. The product ions in the reaction between H+(pyridine)m(H2O)n (m = 1 to 2) and NH3 have been determined for the first time. It is found that the reaction mainly leads to cluster ions of the form H+(NH3)1(pyridine)m(H2O)n-x, with x = 1 or 2 depending on the initial size of the reacting cluster ion. For a given number of water molecules (from 5 to 15) in the cluster ion, rate coefficients are found to be slightly lower than those for protonated pure water clusters reacting with ammonia. The rate coefficients obtained from this study are used in a kinetic cluster ion model under tropospheric conditions. The disagreement between ambient ground level measurements and previous models are discussed in relation to the results from our model and future experimental directions are suggested.


1996 ◽  
Vol 03 (01) ◽  
pp. 1017-1021 ◽  
Author(s):  
J. MATSUO ◽  
M. AKIZUKI ◽  
J. NORTHBY ◽  
G.H. TAKAOKA ◽  
I. YAMADA

A high-current (~100 nA) cluster-ion-beam equipment with a new mass filter has been developed to study the energetic cluster-bombardment effects on solid surfaces. A dramatic reduction of Cu concentration on silicon surfaces has been achieved by 20-keV Ar cluster (N~3000) ion bombardment. The removal rate of Cu with cluster ions is two orders of magnitude higher than that with monomer ions. A significantly higher sputtering yield is expected for cluster-ion irradiation. An energetic cluster-ion beam is quite suitable for removal of metal.


Author(s):  
M. C. Ledbetter ◽  
M. Matthew ◽  
R. J. Beuhler ◽  
L. Friedman

Energetic cluster ion impact on solid surfaces can be used to deposit large quantities of kinetic energy in small assemblies of atoms in the surface. Extremely high transient pressures and increases in the density of surface atoms are produced by these impact processes. Significant alteration of surface structure is expected. We have investigated the effects of bombardment of thin carbon films with singly charged clusters of argon atoms and protonated water molecules accelerated to energies as high as 300 kV. Clusters were generated in weakly ionized plasmas produced by a corona discharge at atmospheric pressure in helium carrier gas. The singly charged seed ions in this discharge served as nuclei in the expanding gas mixture that was introduced into a high vacuum system through a super sonic nozzle and a differentially pumped skimmer.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nurlan Almassov ◽  
Sean Kirkpatrick ◽  
Zhanna Alsar ◽  
Nurzhan Serik ◽  
Christos Spitas ◽  
...  

In this paper, we demonstrate a new, highly efficient method of crosslinking multilayer graphene, and create nanopores in it by its irradiation with low-energy argon cluster ions. Irradiation was performed by argon cluster ions with an acceleration energy E ≈ 30 keV, and total fluence of argon cluster ions ranging from 1 × 109 to 1 × 1014 ions/cm2. The results of the bombardment were observed by the direct examination of traces of argon-cluster penetration in multilayer graphene, using high-resolution transmission electron microscopy. Further image processing revealed an average pore diameter of approximately 3 nm, with the predominant size corresponding to 2 nm. We anticipate that a controlled cross-linking process in multilayer graphene can be achieved by appropriately varying irradiation energy, dose, and type of clusters. We believe that this method is very promising for modulating the properties of multilayer graphene, and opens new possibilities for creating three-dimensional nanomaterials.


1995 ◽  
Vol 396 ◽  
Author(s):  
D. Takeuchi ◽  
J. Matsuo ◽  
I. Yamada

AbstractGas cluster ions contain tens, hundreds or even more than thousands of atoms or molecules as ionized particles. It has been shown that the bombarding effects of gas cluster ions on solid surfaces are quite different from those by monomer ions and involve unique material processing characteristics. In order to make clear the bombarding effects, a study of surface modification of sapphire by Ar and CO2 gas cluster ion beams has been performed. Thickness of the damaged layer and surface roughness produced on sapphire depends strongly on cluster ion energy. Damage layer thickness on a sapphire surface bombarded by 150 keV clusters with average size of about 3000 atoms was 40Å. No significant difference was observed in IR transmittance after cluster bombardment. Mechanical properties of sapphire surfaces can be changed by cluster irradiation at a dose of 1011 ions/cm2.


Author(s):  
M. K. Lamvik

When observing small objects such as cellular organelles by scanning electron microscopy, it is often valuable to use the techniques of transmission electron microscopy. The common practice of mounting and coating for SEM may not always be necessary. These possibilities are illustrated using vertebrate skeletal muscle myofibrils.Micrographs for this study were made using a Hitachi HFS-2 scanning electron microscope, with photographic recording usually done at 60 seconds per frame. The instrument was operated at 25 kV, with a specimen chamber vacuum usually better than 10-7 torr. Myofibrils were obtained from rabbit back muscle using the method of Zak et al. To show the component filaments of this contractile organelle, the myofibrils were partially disrupted by agitation in a relaxing medium. A brief centrifugation was done to clear the solution of most of the undisrupted myofibrils before a drop was placed on the grid. Standard 3 mm transmission electron microscope grids covered with thin carbon films were used in this study.


1991 ◽  
Vol 223 ◽  
Author(s):  
Qin Fuguang ◽  
Yao Zhenyu ◽  
Ren Zhizhang ◽  
S.-T. Lee ◽  
I. Bello ◽  
...  

ABSTRACTDirect ion beam deposition of carbon films on silicon in the ion energy range of 15–500eV and temperature range of 25–800°C has been studied using mass selected C+ ions under ultrahigh vacuum. The films were characterized with X-ray photoelectron spectroscopy, Raman spectroscopy, and transmission electron microscopy and diffraction analysis. Films deposited at room temperature consist mainly of amorphous carbon. Deposition at a higher temperature, or post-implantation annealing leads to formation of microcrystalline graphite. A deposition temperature above 800°C favors the formation of microcrystalline graphite with a preferred orientation in the (0001) direction. No evidence of diamond formation was observed in these films.


2018 ◽  
Author(s):  
C.S. Bonifacio ◽  
P. Nowakowski ◽  
M.J. Campin ◽  
M.L. Ray ◽  
P.E. Fischione

Abstract Transmission electron microscopy (TEM) specimens are typically prepared using the focused ion beam (FIB) due to its site specificity, and fast and accurate thinning capabilities. However, TEM and high-resolution TEM (HRTEM) analysis may be limited due to the resulting FIB-induced artifacts. This work identifies FIB artifacts and presents the use of argon ion milling for the removal of FIB-induced damage for reproducible TEM specimen preparation of current and future fin field effect transistor (FinFET) technologies. Subsequently, high-quality and electron-transparent TEM specimens of less than 20 nm are obtained.


Author(s):  
M.K. Dawood ◽  
C. Chen ◽  
P.K. Tan ◽  
S. James ◽  
P.S. Limin ◽  
...  

Abstract In this work, we present two case studies on the utilization of advanced nanoprobing on 20nm logic devices at contact layer to identify the root cause of scan logic failures. In both cases, conventional failure analysis followed by inspection of passive voltage contrast (PVC) failed to identify any abnormality in the devices. Technology advancement makes identifying failure mechanisms increasingly more challenging using conventional methods of physical failure analysis (PFA). Almost all PFA cases for 20nm technology node devices and beyond require Transmission Electron Microscopy (TEM) analysis. Before TEM analysis can be performed, fault isolation is required to correctly determine the precise failing location. Isolated transistor probing was performed on the suspected logic NMOS and PMOS transistors to identify the failing transistors for TEM analysis. In this paper, nanoprobing was used to isolate the failing transistor of a logic cell. Nanoprobing revealed anomalies between the drain and bulk junction which was found to be due to contact gouging of different severities.


Sign in / Sign up

Export Citation Format

Share Document