scholarly journals Crosslinking Multilayer Graphene by Gas Cluster Ion Bombardment

Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Nurlan Almassov ◽  
Sean Kirkpatrick ◽  
Zhanna Alsar ◽  
Nurzhan Serik ◽  
Christos Spitas ◽  
...  

In this paper, we demonstrate a new, highly efficient method of crosslinking multilayer graphene, and create nanopores in it by its irradiation with low-energy argon cluster ions. Irradiation was performed by argon cluster ions with an acceleration energy E ≈ 30 keV, and total fluence of argon cluster ions ranging from 1 × 109 to 1 × 1014 ions/cm2. The results of the bombardment were observed by the direct examination of traces of argon-cluster penetration in multilayer graphene, using high-resolution transmission electron microscopy. Further image processing revealed an average pore diameter of approximately 3 nm, with the predominant size corresponding to 2 nm. We anticipate that a controlled cross-linking process in multilayer graphene can be achieved by appropriately varying irradiation energy, dose, and type of clusters. We believe that this method is very promising for modulating the properties of multilayer graphene, and opens new possibilities for creating three-dimensional nanomaterials.

2004 ◽  
Vol 19 (9) ◽  
pp. 2687-2693 ◽  
Author(s):  
Lay Gaik Teoh ◽  
Jiann Shieh ◽  
Wei Hao Lai ◽  
Min Hsiung Hon

The effects of mesoporous structure on grain growth were investigated in this study. The synthesis was accomplished using block copolymer as the organic template and tungsten chloride as the inorganic precursor. Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy, x-ray diffractometry (XRD), transmission electron microscopy, and N2 adsorption/desorption isotherms were used to characterize the microstructures obtained for different temperatures. TGA and XRD analyses demonstrate that copolymers were expelled at 150–250 °C, and mesoporous structure was stable up to 350 °C. The pore diameter and the surface area evaluated from the Barrett-Joyner-Halenda model and Brunauer–Emmett–Teller method indicated that the average pore diameter is 4.11 nm and specific surface area is 191.5 m2/g for 250 °C calcination. Arrhenius equation used to calculate the activation energy for grain growth demonstrates that the activation energy for grain growth was about 38.1 kJ/mol before mesostructure collapse and 11.3 kJ/mol after collapse. These results show evidence of two different mechanisms governing the process of grain growth. The presence of the pore can be related to the obstacle for grain growth.


2011 ◽  
Vol 2011 ◽  
pp. 1-11 ◽  
Author(s):  
N. Brackett-Rozinsky ◽  
S. Mondal ◽  
K. R. Fowler ◽  
E. W. Jenkins

We examine a simulation model for polymer extrusion filters and determine its sensitivity to filter parameters. The simulator is a three-dimensional, time-dependent discretization of a coupled system of nonlinear partial differential equations used to model fluid flow and debris transport, along with statistical relationships that define debris distributions and retention probabilities. The flow of polymer fluid, and suspended debris particles, is tracked to determine how well a filter performs and how long it operates before clogging. A filter may have multiple layers, characterized by thickness, porosity, and average pore diameter. In this work, the thickness of each layer is fixed, while the porosities and pore diameters vary for a two-layer and three-layer study. The effects of porosity and average pore diameter on the measures of filter quality are calculated. For the three layer model, these effects are tested for statistical significance using analysis of variance. Furthermore, the effects of each pair of interacting parameters are considered. This allows the detection of complexity, where in changing two aspects of a filter together may generate results substantially different from what occurs when those same aspects change separately. The principal findings indicate that the first layer of a filter is the most important.


Author(s):  
M.C. Ledbetter ◽  
M.W. Matthew ◽  
R.J. Beuhler ◽  
L. Friedman

Mass analyzed beams of accelerated cluster ions have been used to study energy transfer processes on impact with solid surfaces. Singly-charged water molecule clusters containing between 20 and 150 water molecules and one proton have been accelerated to kinetic energies as high as 300 kV and collided with 10 nm films of carbon or carbon covered with 2 μg/cm2 evaporated gold. Alterations in the structure of these films have been studied by transmission electron microscopy.Carbon films bombarded with water clusters of 25 and 100 molecules accelerated to 300 kV are shown in Fig. 1. The use of 100 water molecules produced craters about 7-8 nm in diameter and even 50 molecules produced craters about 1.5-2 nm in diameter; however, 25 molecules failed to produce any detectable alterations in the film. The bombardment of a gold-covered film by similar clusters is shown in Fig. 2. In these cases, gold grains were removed to form voids about 10-20 nm in diameter, even by the clusters as small as 25 molecules, which produced no craters in pure carbon.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Maureen Wanjare ◽  
Joseph Jung-Woong Kim ◽  
Ngan Huang

Since the heart is effectively an anisotropic organ in which the cardiomyocytes (CM) are locally aligned in series, it is important to engineer cardiac tissues that promote CM alignment in order to closely mimic the architecture of the native tissue, as well as better mimic the cellular composition of the heart. The objective of this study was to define the role of anisotropic extracellular matrix cues on the organization and survival of human induced pluripotent stem cell-derived CMs (hiPSC-CMs) by co-culturing hiPSC-CMs and primary endothelial cells (ECs) on parallel-aligned microfibrillar scaffolds. The hiPSC-CMs were generated from hiPSCs using small molecule Wnt pathway agonists and antagonists. Subsequently, the hiPSC-CMs were sequentially seeded on day 15 after EC attachment. We cultured monocultures and cocultures on electrospun three-dimensional (3D) scaffolds of polycaprolactone (PCL) and polyethylene oxide (PEO) polymer blends with an average fiber diameter of 14 μm. Aligned scaffolds were fabricated by stretching the randomly oriented scaffolds by 300% of the original scaffold length. Randomly oriented fibrillar scaffolds had an average pore diameter of 17 μm when compared to the 36 μm pore diameter of aligned scaffolds. Our results indicate that alignment of co-cultured cells at a 5:1 hiPSC-CMs : EC ratio was promoted by anistropic 3D electrospun scaffolds when compared to similar random 3D electrospun scaffolds. Additionally, cocultured cells on aligned fibrillar scaffolds had a mean angle of orientation of 30.8°, relative to the direction of fibrils, which was similar to that of hiPSC-CM monocultures on aligned scaffolds (32.8°). In contrast, the degree of alignment of hiPSC-CMs on randomly oriented fibrillary scaffolds was 43.4°, which suggests a non-oriented population of cells. Aligned scaffolds also produced more synchronized cardiomyocyte contraction than random scaffold orientations, although both induced spontaneous contraction frequency of ~1Hz. This study highlights the importance of nanotopographical cues and intercellular interactions in mediating the morphology and contractility of hiPSC-CMs for treatment of cardiovascular diseases such as myocardial infarction.


Author(s):  
Robert Glaeser ◽  
Thomas Bauer ◽  
David Grano

In transmission electron microscopy, the 3-dimensional structure of an object is usually obtained in one of two ways. For objects which can be included in one specimen, as for example with elements included in freeze- dried whole mounts and examined with a high voltage microscope, stereo pairs can be obtained which exhibit the 3-D structure of the element. For objects which can not be included in one specimen, the 3-D shape is obtained by reconstruction from serial sections. However, without stereo imagery, only detail which remains constant within the thickness of the section can be used in the reconstruction; consequently, the choice is between a low resolution reconstruction using a few thick sections and a better resolution reconstruction using many thin sections, generally a tedious chore. This paper describes an approach to 3-D reconstruction which uses stereo images of serial thick sections to reconstruct an object including detail which changes within the depth of an individual thick section.


Author(s):  
Mai M. Said ◽  
Ramesh K. Nayak ◽  
Randall E. McCoy

Burgos and Wislocki described changes in the mucosa of the guinea pig uterus, cervix and vagina during the estrous cycle investigated by transmission electron microscopy. More recently, Moghissi and Reame reported the effects of progestational agents on the human female reproductive tract. They found drooping and shortening of cilia in norgestrel and norethindrone- treated endometria. To the best of our knowledge, no studies concerning the effects of mestranol and norethindrone given concurrently on the three-dimensional surface features on the uterine mucosa of the guinea pig have been reported. The purpose of this study was to determine the effect of mestranol and norethindrone on surface ultrastructure of guinea pig uterus by SEM.Seventy eight animals were used in this study. They were allocated into two groups. Group 1 (20 animals) was injected intramuscularly 0.1 ml vegetable oil and served as controls.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
Loren Anderson ◽  
Pat Pizzo ◽  
Glen Haydon

Transmission electron microscopy of replicas has long been used to study the fracture surfaces of components which fail in service. Recently, the scanning electron microscope (SEM) has gained popularity because it allows direct examination of the fracture surface. However, the somewhat lower resolution of the SEM coupled with a restriction on the sample size has served to limit the use of this instrument in investigating in-service failures. It is the intent of this paper to show that scanning electron microscopic examination of conventional negative replicas can be a convenient and reliable technique for determining mode of failure.


Author(s):  
Yu Liu

The image obtained in a transmission electron microscope is the two-dimensional projection of a three-dimensional (3D) object. The 3D reconstruction of the object can be calculated from a series of projections by back-projection, but this algorithm assumes that the image is linearly related to a line integral of the object function. However, there are two kinds of contrast in electron microscopy, scattering and phase contrast, of which only the latter is linear with the optical density (OD) in the micrograph. Therefore the OD can be used as a measure of the projection only for thin specimens where phase contrast dominates the image. For thick specimens, where scattering contrast predominates, an exponential absorption law holds, and a logarithm of OD must be used. However, for large thicknesses, the simple exponential law might break down due to multiple and inelastic scattering.


Author(s):  
W. D. Cooper ◽  
C. S. Hartley ◽  
J. J. Hren

Interpretation of electron microscope images of crystalline lattice defects can be greatly aided by computer simulation of theoretical contrast from continuum models of such defects in thin foils. Several computer programs exist at the present time, but none are sufficiently general to permit their use as an aid in the identification of the range of defect types encountered in electron microscopy. This paper presents progress in the development of a more general computer program for this purpose which eliminates a number of restrictions contained in other programs. In particular, the program permits a variety of foil geometries and defect types to be simulated.The conventional approximation of non-interacting columns is employed for evaluation of the two-beam dynamical scattering equations by a piecewise solution of the Howie-Whelan equations.


Sign in / Sign up

Export Citation Format

Share Document