Same-cell correlative video light microscopy/Electron Microscopy tomography: An approach to understanding kinetochore behavior during mitosis

Author(s):  
B.F. McEwen ◽  
G. Osorio ◽  
R. Cole ◽  
C.L. Rieder

The goal of structural biology is to determine structure, structural relationships, and changes in these parameters in an effort to comprehend mechanism of function. In this context same-cell correlative LM/EM provides a powerful approach for elucidating the mechanisms responsible for the behavior of cell components. In this method the event of interest is followed in vivo by video-LM, and the cell then fixed at a critical time during the observational period for a subsequent 3D EM analysis. In this manner the history of a particular event or response can be correlated with the 3D ultrastructure underlying the event.Biologists have long sought to elucidate the mechanism(s) that generate, control and coordinate the poleward and away-from-pole motion of sister kinetochores on each chromosome during mitosis. These “congression” movements require the association of microtubules with each kinetochore (kMTs), and ultimately align the chromosome on the spindle equator. Motion in each direction is distinct because the slow growing (−) ends of kMTs end near the spindle pole while the rapidly growing (+) ends terminate in the kinetochore plate.

1985 ◽  
Vol 100 (3) ◽  
pp. 887-896 ◽  
Author(s):  
G Sluder ◽  
C L Rieder

The reproduction of spindle poles is a key event in the cell's preparation for mitosis. To gain further insight into how this process is controlled, we systematically characterized the ultrastructure of spindle poles whose reproductive capacity had been experimentally altered. In particular, we wanted to determine if the ability of a pole to reproduce before the next division is related to the number of centrioles it contains. We used mercaptoethanol to indirectly induce the formation of monopolar spindles in sea urchin eggs. We followed individually treated eggs in vivo with a polarizing microscope during the induction and development of monopolar spindles. We then fixed each egg at one of three predetermined key stages and serially semithick sectioned it for observation in a high-voltage electron microscope. We thus know the history of each egg before fixation and, from earlier studies, what that cell would have done had it not been fixed. We found that spindle poles that would have given rise to monopolar spindles at the next mitosis have only one centriole whereas spindle poles that would have formed bipolar spindles at the next division have two centrioles. By serially sectioning each egg, we were able to count all centrioles present. In the twelve cells examined, we found no cases of acentriolar spindle poles or centriole reduplication. Thus, the reproductive capacity of a spindle pole is linked to the number of centrioles it contains. Our experimental results also show, contrary to existing reports, that the daughter centriole of a centrosome can acquire pericentriolar material without first becoming a parent. Furthermore, our results demonstrate that the splitting apart of mother and daughter centrioles is an event that is distinct from, and not dependent on, centriole duplication.


This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Poushali Chakraborty ◽  
Sapna Bajeli ◽  
Deepak Kaushal ◽  
Bishan Dass Radotra ◽  
Ashwani Kumar

AbstractTuberculosis is a chronic disease that displays several features commonly associated with biofilm-associated infections: immune system evasion, antibiotic treatment failures, and recurrence of infection. However, although Mycobacterium tuberculosis (Mtb) can form cellulose-containing biofilms in vitro, it remains unclear whether biofilms are formed during infection in vivo. Here, we demonstrate the formation of Mtb biofilms in animal models of infection and in patients, and that biofilm formation can contribute to drug tolerance. First, we show that cellulose is also a structural component of the extracellular matrix of in vitro biofilms of fast and slow-growing nontuberculous mycobacteria. Then, we use cellulose as a biomarker to detect Mtb biofilms in the lungs of experimentally infected mice and non-human primates, as well as in lung tissue sections obtained from patients with tuberculosis. Mtb strains defective in biofilm formation are attenuated for survival in mice, suggesting that biofilms protect bacilli from the host immune system. Furthermore, the administration of nebulized cellulase enhances the antimycobacterial activity of isoniazid and rifampicin in infected mice, supporting a role for biofilms in phenotypic drug tolerance. Our findings thus indicate that Mtb biofilms are relevant to human tuberculosis.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Henriette Frikke-Schmidt ◽  
Peter Arvan ◽  
Randy J. Seeley ◽  
Corentin Cras-Méneur

AbstractWhile numerous techniques can be used to measure and analyze insulin secretion in isolated islets in culture, assessments of insulin secretion in vivo are typically indirect and only semiquantitative. The CpepSfGFP reporter mouse line allows the in vivo imaging of insulin secretion from individual islets after a glucose stimulation, in live, anesthetized mice. Imaging the whole pancreas at high resolution in live mice to track the response of each individual islet over time includes numerous technical challenges and previous reports were only limited in scope and non-quantitative. Elaborating on this previous model—through the development of an improved methodology addressing anesthesia, temperature control and motion blur—we were able to track and quantify longitudinally insulin content throughout a glucose challenge in up to two hundred individual islets simultaneously. Through this approach we demonstrate quantitatively for the first time that while isolated islets respond homogeneously to glucose in culture, their profiles differ significantly in vivo. Independent of size or location, some islets respond sharply to a glucose stimulation while others barely secrete at all. This platform therefore provides a powerful approach to study the impact of disease, diet, surgery or pharmacological treatments on insulin secretion in the intact pancreas in vivo.


2021 ◽  
Vol 22 (16) ◽  
pp. 8392
Author(s):  
Reiner Noschka ◽  
Fanny Wondany ◽  
Gönül Kizilsavas ◽  
Tanja Weil ◽  
Gilbert Weidinger ◽  
...  

Granulysin is an antimicrobial peptide (AMP) expressed by human T-lymphocytes and natural killer cells. Despite a remarkably broad antimicrobial spectrum, its implementation into clinical practice has been hampered by its large size and off-target effects. To circumvent these limitations, we synthesized a 29 amino acid fragment within the putative cytolytic site of Granulysin (termed “Gran1”). We evaluated the antimicrobial activity of Gran1 against the major human pathogen Mycobacterium tuberculosis (Mtb) and a panel of clinically relevant non-tuberculous mycobacteria which are notoriously difficult to treat. Gran1 efficiently inhibited the mycobacterial proliferation in the low micro molar range. Super-resolution fluorescence microscopy and scanning electron microscopy indicated that Gran1 interacts with the surface of Mtb, causing lethal distortions of the cell wall. Importantly, Gran1 showed no off-target effects (cytokine release, chemotaxis, cell death) in primary human cells or zebrafish embryos (cytotoxicity, developmental toxicity, neurotoxicity, cardiotoxicity). Gran1 was selectively internalized by macrophages, the major host cell of Mtb, and restricted the proliferation of the pathogen. Our results demonstrate that the hypothesis-driven design of AMPs is a powerful approach for the identification of small bioactive compounds with specific antimicrobial activity. Gran1 is a promising component for the design of AMP-containing nanoparticles with selective activity and favorable pharmacokinetics to be pushed forward into experimental in vivo models of infectious diseases, most notably tuberculosis.


2021 ◽  
Vol 16 (1) ◽  
pp. 523-536
Author(s):  
Minghao Li ◽  
Jianbin Zhuang ◽  
Di Kang ◽  
Yuzhuo Chen ◽  
Weiliang Song

Abstract Colorectal cancer (CRC) is the third most common malignancy worldwide. Circular RNAs (circRNAs) have been implicated in cancer biology. The purpose of the current work is to investigate the precise parts of circRNA centrosome and spindle pole-associated protein 1 (circ-CSPP1) in the progression of CRC. Our data showed that circ-CSPP1 was significantly overexpressed in CRC tissues and cells. The knockdown of circ-CSPP1 attenuated cell proliferation, migration, invasion and promoted apoptosis in vitro and weakened tumor growth in vivo. circ-CSPP1 directly targeted miR-431, and circ-CSPP1 knockdown modulated CRC cell progression in vitro via upregulating miR-431. Moreover, LIM and SH3 protein 1 (LASP1) was a functional target of miR-431 in modulating CRC cell malignant progression. Furthermore, circ-CSPP1 in CRC cells functioned as a posttranscriptional regulator on LASP1 expression by targeting miR-431. Our present study identified the oncogenic role of circ-CSPP1 in CRC partially by the modulation of the miR-431/LASP1 axis, providing evidence for circ-CSPP1 as a promising biomarker for CRC management.


1994 ◽  
Vol 22 (03n04) ◽  
pp. 329-336 ◽  
Author(s):  
Akira Kawasaki ◽  
Yutaka Mizushima ◽  
Hitoshi Kunitani ◽  
Masanobu Kitagawa ◽  
Masashi Kobayashi

A 51 year-old male was admitted to our hospital with chief complaints of fever, dry cough and dyspnea. Chest X -ray films and his history of taking Chinese medicine for liver dysfunction were suggestive of drug-induced pneumonitis. Lymphocyte stimulation test (LST) to causative Chinese medical drugs of Sho-saiko-to and Dai-saiko-to was negative with peripheral blood lymphocytes (PBL), but was positive with Iymphocytes from bronchoalveolar lavage fluid (BALF). In vivo challenge test for Sho-saiko-to was positive. The LST with BALF-lymphocytes proved to be very useful in making a diagnosis of drug-induced pneumonitis.


2016 ◽  
Vol 7 ◽  
pp. 645-654 ◽  
Author(s):  
Bin Song ◽  
Yanli Zhang ◽  
Jia Liu ◽  
Xiaoli Feng ◽  
Ting Zhou ◽  
...  

Titanium dioxide nanoparticles (TiO2 NPs) possess unique characteristics and are widely used in many fields. Numerous in vivo studies, exposing experimental animals to these NPs through systematic administration, have suggested that TiO2 NPs can accumulate in the brain and induce brain dysfunction. Nevertheless, the exact mechanisms underlying the neurotoxicity of TiO2 NPs remain unclear. However, we have concluded from previous studies that these mechanisms mainly consist of oxidative stress (OS), apoptosis, inflammatory response, genotoxicity, and direct impairment of cell components. Meanwhile, other factors such as disturbed distributions of trace elements, disrupted signaling pathways, dysregulated neurotransmitters and synaptic plasticity have also been shown to contribute to neurotoxicity of TiO2 NPs. Recently, studies on autophagy and DNA methylation have shed some light on possible mechanisms of nanotoxicity. Therefore, we offer a new perspective that autophagy and DNA methylation could contribute to neurotoxicity of TiO2 NPs. Undoubtedly, more studies are needed to test this idea in the future. In short, to fully understand the health threats posed by TiO2 NPs and to improve the bio-safety of TiO2 NPs-based products, the neurotoxicity of TiO2 NPs must be investigated comprehensively through studying every possible molecular mechanism.


Author(s):  
Sandra K. Erickson ◽  
Allen D. Cooper ◽  
Graham F. Barnard ◽  
Christopher M. Havel ◽  
John A. Watson ◽  
...  

2021 ◽  
Vol 9 (1) ◽  
pp. 40-49
Author(s):  
Dana Osborne

AbstractThis analysis examines the ways in which a single speaker, Ana, born in mid-century East Los Angeles, organizes and reflects upon her experiences of the city through language. Ana’s story is one that sheds light on the experiences of many Mexican Americans who came of age at a critical time in a transitioning L.A., and the slow move of people who had been up until mid-century relegated largely in and around racially and socioeconomically segregated parts of L.A. These formative experiences are demonstrated to have informed the ways that speakers parse the social and geographical landscape along several dimensions, and this analysis interrogates the symbolic value of a special category of everyday language, deixis, to reveal the intersection between language and social experience in the cityscape of L.A. In this way, it is analytically possible to not only approach the habituation and reproduction of specific deictic fields as indexical of the ways that speakers parse the city, but also to demonstrate the ways in which key moments in the history of the city have shaped the emergence and meaning of those fields.


Sign in / Sign up

Export Citation Format

Share Document