Electron Microscopy investigations of buried Si3N4 isolation layers

Author(s):  
S.K. Maksimov ◽  
V.N. Kukin

Formation of buried Si3N4 layers obtained by using repeated cycles of implantation and annealing has been investigated. Structure investigations were made with the use of a CM30 Twin electron microscope (whose diaphragm is 0.18 nm-1 ). In HREM studies, axial micrographs in Si reflections of the 000, 111 and 220 types were employed. Two types of samples were used: "plane view" samples and those of a "cross section". Si3N4 precipitates were identified by application of the EELS method on the LN and Lsiedges.N+ - ions were implanted into silicon wafers (of p-type, (001), 10 Ω cm) at a room temperature- The dose pf ions implanted in each cycle was 5.1010 cm-2 . The total dose was 5.1017 cm-2 , The energy of ions - 150 keV, the current density of the ion beam 25 μA/cm-2 . Annealing in the atmosphere of nitrogen was made at 1100° C which lasted 2 hours after the first cycle of implantation; in the other cycles it lasted 0.5 hours at 850° C. After the operation of ion beam synthesis was completed a silicon epitaxial layer 0.8-1 μm thick was grown.

1994 ◽  
Vol 373 ◽  
Author(s):  
L. L. Snead ◽  
S. J. Zinkle

AbstractThe effects of implanted ion chemistry and displacement damage on the amorphization threshold dose of SiC were studied using cross-section transmission electron microscopy. Room temperature as well as 200 and 400°C irradiations were carried out with 3.6 MeV Fe, 1.8 MeV Cl, 1 MeV He or 0.56 MeV Si ions. The room temperature amorphization threshold dose in irradiated regions well separated from the implanted ions was found to range from 0.3 to 0.5 dpa for the four different ion species. The threshold dose for amorphization in the He, Si and Fe ion-implanted regions was also σ0.3 to 0.5 dpa. On the other hand, the amorphization threshold in the Climplanted region was only about 0.1 dpa. The volume change associated with amorphization was σ17&. No evidence for amorphization was obtained in specimens irradiated at 200 or 400°C.


Author(s):  
H. Koike ◽  
S. Sakurai ◽  
K. Ueno ◽  
M. Watanabe

In recent years, there has been increasing demand for higher voltage SEMs, in the field of surface observation, especially that of magnetic domains, dislocations, and electron channeling patterns by backscattered electron microscopy. On the other hand, the resolution of the CTEM has now reached 1 ∼ 2Å, and several reports have recently been made on the observation of atom images, indicating that the ultimate goal of morphological observation has beem nearly achieved.


Author(s):  
R. Haswell ◽  
U. Bangert ◽  
P. Charsley

A knowledge of the behaviour of dislocations in semiconducting materials is essential to the understanding of devices which use them . This work is concerned with dislocations in alloys related to the semiconductor GaAs . Previous work on GaAs has shown that microtwinning occurs on one of the <110> rosette arms after indentation in preference to the other . We have shown that the effect of replacing some of the Ga atoms by Al results in microtwinning in both of the rosette arms.In the work to be reported dislocations in specimens of different compositions of Gax Al(1-x) As and Gax In(1-x) As have been studied by using micro indentation on a (001) face at room temperature . A range of electron microscope techniques have been used to investigate the type of dislocations and stacking faults/microtwins in the rosette arms , which are parallel to the [110] and [10] , as a function of composition for both alloys . Under certain conditions microtwinning occurs in both directions . This will be discussed in terms of the dislocation mobility.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


Author(s):  
J. Douglass ◽  
T. D. Myers ◽  
F. Tsai ◽  
R. Ketcheson ◽  
J. Errett

Abstract This paper describes how the authors used a combination of focused ion beam (FIB) microprobing, transmission electron microscopy (TEM), and data and process analysis to determine that localized water residue was causing a 6% yield loss at die sort.


2010 ◽  
Vol 16 (6) ◽  
pp. 662-669 ◽  
Author(s):  
S. Simões ◽  
F. Viana ◽  
A.S. Ramos ◽  
M.T. Vieira ◽  
M.F. Vieira

AbstractReactive multilayer thin films that undergo highly exothermic reactions are attractive choices for applications in ignition, propulsion, and joining systems. Ni/Al reactive multilayer thin films were deposited by dc magnetron sputtering with a period of 14 nm. The microstructure of the as-deposited and heat-treated Ni/Al multilayers was studied by transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) in plan view and in cross section. The cross-section samples for TEM and STEM were prepared by focused ion beam lift-out technique. TEM analysis indicates that the as-deposited samples were composed of Ni and Al. High-resolution TEM images reveal the presence of NiAl in small localized regions. Microstructural characterization shows that heat treating at 450 and 700°C transforms the Ni/Al multilayered structure into equiaxed NiAl fine grains.


2011 ◽  
Vol 17 (6) ◽  
pp. 889-895 ◽  
Author(s):  
Lynne M. Gignac ◽  
Surbhi Mittal ◽  
Sarunya Bangsaruntip ◽  
Guy M. Cohen ◽  
Jeffrey W. Sleight

AbstractThe ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.


1990 ◽  
Vol 201 ◽  
Author(s):  
R. Jebasinski ◽  
S. Mantl ◽  
K. Radermacher ◽  
P. Fichtner ◽  
W. Jăger ◽  
...  

AbstractThe coarsening of CoSi2 precipitates and the microstructural evolution of (111) Si implanted with 200 keV Co+ ions at 350°C and fluences of 1×1016cm−2 and 6×1016cm−2 were investigated as a function of depth, annealing temperature and annealing time using Rutherford Backscattering Spectroscopy (RBS) and Transmission Electron Microscopy (TEM). After annealing cross-section TEM micrographs show a layered array of platelet-shaped precipitates with preferred facets on {111} planes. The fraction of Co-atoms, that were redistributed during the different annealing temperatures and times, has been used to determine an activation energy for the precipitate coarsening. By applying the Meechan-Brinkman and the change-of-slope methods, we obtained activation energies in the range of 3.2 – 3.6 eV.


1987 ◽  
Vol 2 (2) ◽  
pp. 211-215 ◽  
Author(s):  
R. S. Bhattacharya ◽  
A. K. Rai ◽  
P. P. Pronko

Ion-beam mixing of Ti layers with sintered α-SiC and hot-pressed Si3N4 was measured for 1 McV Au+ at doses of 1X1016 cm−2 and 5X1016 cm−2. Rutherford backscattering (RBS) and cross-section transmission electron microscopy (XTEM) were used to evaluate the mixing. Mixing was observed in Ti/SiC system; however, there was no mixing in Ti/Si3N4 system. Results are discussed in light of the enthalpy of mixing criterion for metal-insulator systems.


1998 ◽  
Vol 6 (9) ◽  
pp. 18-21
Author(s):  
Alwyn Eades

The world of electron microscopy is in a period of transition from acquiring images on film to acquiring images digitally, using CCD cameras, for example. It would be useful to knew how much information there is on a piece of film, in order to know how film compares with digital methods and to be able to make good judgements on the optimum moment to change from one technology to the other.This is an attempt to use simple arguments to estimate just how much information there is in an image exposed on film in the transmission electron microscope, the main reason for addressing this issue Is that, while many people are affected by it there seems to be little agreement on the answer.


Sign in / Sign up

Export Citation Format

Share Document